学年

教科

質問の種類

数学 高校生

vision questⅡ English expression hope70ページ preview 1.date&time 2.numbers(sizes,measurements,etc) 3.prices&Phone numbers listening task 1.... 続きを読む

140 // TIT Activity for Communication 3 Preview Listen to the sentences below. 1 Dates & Times Listening for Numbers the on Enio 1. "The movie starts at 5:20. Can you be ready in ten minutes?" "OK. I'll try." 2. "What time is it now?" "It's 11:30." basalaila awohlsw 3. I have an appointment with the dentist this Thursday, the 10th. M 4. "When does school begin?" "It begins on April 8th." 5. Our school was established in 1965. 6. My family has lived in this town since 2005. 2 Numbers (sizes, measurements, etc.) 1. Two thirds of the students come to school by bus. 2. One mile is about 1,609 meters. 3. The city has a population of about 2.5 million. 4. The temperature dropped to 12°C. 5. APA Air Flight 125 for London will be departing from Gate 14 at 10:15. 3 Prices & Phone numbers 1. The price of this bag is $27.89, but you can have it at 10 percent off. 2. What would you do if you won 100 million yen in a lottery? 3. "A hamburger and a cola, please." "That'll be £2.99." 4. I need €20, but I'm €5 short. 5. My phone number is 612-750-5613. Listening Task Listen to the conversations and choose the correct answers. 1. How much of the earth's surface is covered by ocean? 1 more than one third more than one fourth 監督署 ER 70 3 more than two thirds 4 more than two fifths 2. When were the Olympic Games held in Atlanta? 1 in 1966 2 in 1969 3. How much did the dress cost? 1,100 yen 2 1,800 yen 3 in 1996 4 in 1999 S 8,000 yen ③ 13,000 48,800 yen bluros ④ 30,000 about 200,000 4. How many people can the concert hall hold? ① 1,300 ② 3,000 5. How many people live in the city? ①about 2,000 2 about 12,000 3 about 20,000 ① 207-7300 2207-7003 ③ 702-3300 6. What's the phone number of the restaurant? The number is 510- ④ 702-3003

回答募集中 回答数: 0
数学 高校生

グレーのマーカーの部分を教えてほしいです。

重要 例題 55 関数の作成 図のような1辺の長さが2の正三角形ABC がある。 点PA が頂点Aを出発し,毎秒1の速さで左回りに辺上を1周す るとき,線分 AP を 1辺とする正方形の面積yを,出発後 の時間x (秒) の関数として表し、そのグラフをかけ。 B ただし、点Pが点Aにあるときは y=0 とする。 CHARTS OTTT- はは正方形の面積で APを1辺をするからな か→ x=2,4 (S) 平方の定理から求める。 3章 y=AP2 であり, 条件から,xの変域は 0≤x≤6 [1] x=0, x=6 のとき よって [2]0<x≦2 のとき y=x2 点Pが点Aにあるから 点Pは辺AB上にあって y=0 AP=x P x-4 [3] 2<x≦4のとき 点Pは辺BC上にある。 辺BCの中点をMとすると, BCAM であり よって, 2<x<3のとき BM=1 B-PM x-2 ると PM=1-(x-2)=3-x 3<x≦4のとき ここで AM=√3 PM=(x-2)-1=x-3 ミルガウス 7 関数とグラフ ゆえに, AP2=PM2+AM2 から y=(x-3)2+311] [4] 4<x<6 のとき 点Pは辺 CA 上にあり, PC=x-4, AP2=(AC-PC) から y=(x-6)² [1]~[4] から 0≦x≦2 のとき y=x2 2<x≦4 のとき y=(x-3)2 +3 YA 4 3 4<x≦6 のとき y=(x-6)2 グラフは右の図の実線部分である。 234 6 x ◆結局 2<x≦4 のとき PM=|x-3| 頂点(3,3), 軸 x=3 の放物線 {2-(x-4)}2=(6-x) 2 =(x-6)2 頂点 (6,0),軸x=6 の放物線 x=0, y=0 は y=x2 に, x=6, y=0 は y=(x-6)2 に含められる。 ④ 88-237 PRACTICE・・・ 55 1辺の長さが1の正方形ABCD がある。 点Pが頂点Aを出発し, 毎秒1の速さでA→B→C→D→Aの順に辺上を1周するとき, 線分APを1辺とす る正方形の面積yを,出発後の時間x (秒) の関数で表し,そのグラフをかけ。 ただし、点Pが点Aにあるときは y=0 とする。 []

未解決 回答数: 1
数学 高校生

マーカーの部分を教えてほしいです。

92 重要 例題 54 1次関数の決定 (2) 関数y=ax-a+30≦x≦) の値域が 1≦y≦b であるとき,定数a, bo 値を求めよ。 CHART SOLUTION グラフ利用 端点に注目 1次関数 y=ax+b というと, α = 0 であるが,単に関数というときは, α=0 の場合も考えなければならない。 基本 この例題では,xの係数がαであるから α>0, a=0, a<0 の場合に分け て, 値域を求める。 ...... 次に,求めた値域が 1≦y≦b と一致するように a,bの連立方程式を作って解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか吟味する のを忘れずに。 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] YA [1] α>0のとき この関数はxの値が増加するとyの値も増加するから, x=2 で最大値 6, x=0で最小値1をとる。 よって a+3=b, -a+3=1 1 これを解いて a=2, b=5 これは, α>0を満たす。 a+3 0 2 x x [2] a=0 のとき この関数は y=3 定数関数 このとき, 値域は y=3であり、1≦y≦bに適さない。 [3] α <0 のとき 31. この関数はxの値が増加するとyの値は減少するから, x=0 で最大値 6, x=2で最小値1をとる。 ba+3 よって -α+3=b, a+3=1 これを解いて a=-2,6=5 これは, a<0 を満たす。 1 a+3 0 2 [1]~[3]から (a,b)=(2,5),(-2,5) PRACTICE・・・ 54 ③ (1) 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2)関数y=ax+b (b≦x≦b+1)の値域が-3≦ys5であるとき、定数a, bo 値を求めよ。 (3)関数y=ax+b (1≦x≦3)の最大値が最小値の2倍であり、グラフが点 (1,2 を通るという。 定数a, b の値を求めよ。

解決済み 回答数: 1
数学 高校生

(1)の解答の"軸はy軸"という部分がわかりません。

解答 86 基本 例題 48 2次関数のグラフの位置関係 次の2次関数のグラフは, 2次関数 y= x2 のグラフをそれぞれどのよう 00000 基本例題 に平行移動したものかを答えよ。また,それぞれのグラフにおける軸と を求めよ。 (1) y=1/2x+1 (2)y=1/2(x+2)2 (3)y=1/2/(x-4)2+2 1p.83 基本事項4 基本49 CHART SOLUTION 2次関数y=a(x-p2gのグラフ y=ax2 のグラフをx軸方向に, y 軸方向にだけ平行移動 軸は直線xp, 頂点は点(b,g) (1)~(3)の関数はすべてy=1/2x-p2gの形であるから,そのグラフは, 1 2次関数 y=x2 のグラフを平行移動したグラフである。 よって,(1)~(3)において, p, g を求めればよい。 (2)x+2=x-(-2) すなわち y=1/2(x-2)とする。 (1)y軸方向に1だけ平行移動したもの。 軸は軸, 頂点は点 ( 0, 1) (2)与えられた関数の式を変形して y=1/2(x-(-2)2 よって, x軸方向に-2だけ平行移動したもの。 軸は直線x=-2, 頂点は点(-2,0) 8116 p = 0 つまり,x軸方向 には移動していない。 なお, y 軸を 「直線 x=0」とも表す。 次の2次関数 (1) y=2x2- CHART 解答 2次関 平方完 軸は 一般に すると ことに (1) I (2) (1) 2x2-6- =2{(x =2(x- よって したが になる。 ◆ 「2だけ平行移動」 ではない! 軸方向に 4, y 軸方向に2だけ平行移動したもの。 x+2=x-(-2) 軸は直線x=4, 頂点は点(42) と考える。 (1)|| y y (3) y また, (2)-xz == -{( =-( よっ した にな また, 2 x -20 2 4 14 x i PRACTICE・・・ 48 2次関数y=-3(x+2)- のグラフをx軸方向に 直線

解決済み 回答数: 1
数学 高校生

(2) のベン図のBの部分に2と9が入るのはなぜですか?

解 64 基本 例題 35 2つの集合と要素 00000 (1) U=(1, 2, 3, 4, 5, 6, 7} を全体集合とする。 Uの部分集合 A={1, 4), B={2, 4, 5, 6} について, 集合 ANB, AUB, AUB を (2) 全体集合 U={x/1≦x≦10, xは整数} の部分集合 A, B について、 A∩B={3, 6, 8), A∩B={4, 5, 7}, A∩B={1, 10} とする。 求めよ。 このとき, 集合 A, B, AUB を求めよ。 CHART 集合の要素 OLUTION ベン図の活用 p.62 基本事項 1 基本38 集合に関する問題は,ベン図 (集合の関係を表す図) をかくとわかりやすい。......!! (1) まず, A∩B の要素を求めて図に書き込む。 そして, A,Bの残りの要素を 書き込んでいく。 (2)要素のわかっている集合 A∩B, ANB, A∩B が図のどの部分かを調べて、 その要素を図に書き込んでいく。 (1) A∩B={4} よって, 右の図のようになり B 2 A∩B A∩B={2,5,6} AUB={1,3,4,7} AUB={3,7} (2)条件から、右の図のようになり U A={1,3, 6, 8, 10} 4 1 B={2,3, 6, 8, 9} 5 10 7 AUB ={1,2,3,6,8,9,10} 2 3/6/8 6 AUB B 基本 例題 36 実数全体を全体集合 C={x|k-5≦x≦k (1) 次の集合を求め (ア) A∩B (2) ACCとなる CHART SOL 解答 不等式で表され 集合の要素が入 すとわかりやす その際、端の で表しておく 例えば,P= (1) 右の図から (ア) A∩B={x|- (イ) AUB={xl (ウ) B={xx<- (エ) AUB={x| (2) ACCとなる k-5-2 6≦k+5 が同時に成り立 ①から k≤ 共通範囲を求め INFORMATIO (2) において, ACC′ となる A AUB すなわち, 1 置する会体 PRACTICE... 35% ② (1)=1,2,3,4,5,6, 7, 8} を全体集合とする。 Uの部分集合 A={2,5, B={1, 3, 5} について, 集合 ANB, AUB を求めよ。 (2)1桁の自然数を全体集合ひとし その2つの部 A∩B={3, 9}, A∩B={2,4 Bを求めよ。 6) PRACTICE・・・ 3 B={x|-3< (1)次の

解決済み 回答数: 1
数学 高校生

(2)番についてです。6≦2a+5<7でなく6<2a+5≦7になるのはなぜですか?

54 基本 例題 31 1次不等式の整数解 00000 (2) 不等式 5(x-1) <2(2x+α) を満たすxのうちで,最大の整数が6であ (1) 不等式 6x+8(4-x) 5 を満たす2桁の自然数xをすべて求めよ。 るとき、定数αの値の範囲を求めよ。 CHART SOLUTION 1次不等式の整数解 数直線を利用 まずは、与えられた不等式を解く。 (1)不等式の解で、2桁の自然数であるものを求める。 基本で (2)不等式の解が、x<A の形となる。ここで,x<4を満たす最大の整数が6 であるということは, x=6 は x<A を満たすが, x=7 は x<A を満たさないということ。これを図 に示すと右のようになる。 A ズーム UP 不等 問題 m, nh max 例 (1) 6x+8(4-x)>5から ゆえにx2=13 -2x-27 2桁 -=13.5 は2桁の自然数であるから 14 10≤x≤13 10 11 12 13 13.5 x よって x=10, 11, 12, 13 (2) 5(x-1)<2(2x+α) から x<2a+5 ◆展開して整理。 ◆不等号の向きが変わる。 ◆解の吟味。 $3000 S 例 [1] 2 ① ◆展開して整理。 ①を満たすxのうちで最大の整数が6となるのは 6<2a+5≤7 のときである。 1<2a≤2 よって 1/12kas1 3 _RACTICE... 31 ③ 1) 不等式 x+ 2) 不等式 5(m 15 3 ① 6/2a+5<7 とか (6≦2a+5≦7 などとい 6 2a+57 x ないように等号の有無 に注意する。 注意 2 5-2 2 を満たす ①を満たす最大の整数 JO $50 > ◆α=1 のとき, 不等式は <7で、条件を満たす a = 1/2 のとき,不等式 $30 s> p <6で条件を満たさ ない。 ない」と答える 34 (2)-[0] 注意

未解決 回答数: 1