学年

教科

質問の種類

数学 高校生

(2)です。 「各辺を加えて」の作業をしたら、等号の=は消えるというルールはありますか? 答えが<=ではなく<なのが理解できませんでした、🥲

例題 33 不等式の性質と式の値の範囲 (2) 65 00000 ①① yを正の数とする。 x, 3x+2y を小数第1位で四捨五入すると,それぞれ 6, になるという。 xの値の範囲を求めよ。 (2) yの値の範囲を求めよ。 ・基本 32 1 章 針 まずは,問題文で与えられた条件を, 不等式を用いて表す。 例えば,小数第1位を四捨五入して4になる数αは, 3.5以上 4.5未満の数であるから, αの値の範囲は3.5≦a <4.5 である。 (2) 3x+2yの値の範囲を不等式で表し, 3xの値の範囲を求めれば, 各辺を加えるこ とで2yの値の範囲を求めることができる。更に、各辺を2で割って, yの値の範囲 を求める。 (1) xは小数第1位を四捨五入すると6になる数であるか ら 5.5x6.5 ① (2) 3x+2yは小数第1位を四捨五入すると21 になる数で 5.5≤x≤6.4, 5.5≤x≤6.5 などは誤り! 41次不等式 あるから 20.5≦3x+2y<21.5 ...... ② ② ① の各辺に-3を掛けて JR (S) 16.5-3x> -19.5 すなわち -19.5<-3x≦16.5 ・・・・・ ③ 負の数を掛けると、不等 号の向きが変わる。 Joll ②③の各辺を加えて 20.5 19.5< 3x+2y-3x<21.5-16.5 不等号に注意 したがって 1 <2y<5 ****.. 3x-10 (*) (検討参照)。 各辺を2で割って 2 per ad

解決済み 回答数: 1
数学 高校生

黄色いマーカーを引いたところってどのように計算して答えを出しますか? 私が計算したら-1±√iが出ました。

基本 例題 61 高次方程式の解法 (2) 次の方程式を解け。 ①① 103 (1) x°+3x²+4x+4=0 (2)2x+5x3+5x2-2=0 p.101 基本事項 1 前ページと同様に,左辺を因数分解し、1次、2次の方程式に帰着させる。 公式利用,おき換えでは因数分解しにくいから,因数定理を利用する。 なお, (1) の左辺の係数はすべて正であるから, xに正の数を代入しても=0にはなら ない。よって, 負の数を代入してみる。 (1) P(x)=x3+3x2+4x +4 とすると 解答 P(-2)=(-2)+3(-2)'+4(-2)+4=0 (*) 組立除法 1 3 4 4-2 2 2章 11 1 高次方程式 よって,P(x) は x+2 を因数にもつ。 ゆえに P(x)=(x+2)(x2+x+2) (*) P(x)=0から x+2=0 または x2+x+2=0 x+2=0から x2+x+2=0から x=-2 - −1±√7i x= 2 したがって 1±√7i x=-2, 2 (2) P(x)=2x4 +5x3+5x2-2 とすると P(-1)=2(-1)*+5(-1)+5(−1)-2=0 よって,P(x) は x+1 を因数にもつ。 ゆえに -2-2-4 1 1 2 0 < x+2 を因数にもつこと に着目し, 割り算しない で P(x)=x3+2x2 +(x2+4x+4 ) =x2(x+2)+(x+2)2 =(x+2)(x2+x+2) と変形してもよい。 25 5 0 -2|-1 -2-3-2 2 P(x)=(x+1)(2x3+3x2+2x-2) また, Q(x)=2x3+3x2+2x-2 とすると (1/21)=(1/2)+3(1/2)+2.1/2- 2 3 2-2 0 +2・ -2=0 よって, Q(x)はx x-1/2 を因数にもつ。 12 20 3 2-2 224 ゆえに Q(x)=(x-212) (2x2+4x+4) Q(x)=(x-1)(2x+4x+4) =(2x-1)(x2+2x+2) (x+1)(2x-1)(x2+2x+2)=0 x+1=0 または 2x-1=0 よって ゆえに x+1=0から または x2+2x+2=0 x=-1 2x-1=0から x= x2+2x+2=0 から したがって x=-1±i 1 x=-1, -1±i 2 2 1 2 4

解決済み 回答数: 1