学年

教科

質問の種類

数学 高校生

(1)を部分分数分解ではなく、x=2sinθと置いたのですが、それだとダメなんでしょうか?

206 第6章 積分法 基礎問 113 区分求積法 定積分を用いて,次の極限値を求めよ. n2 122 n² + (1) lim n4n2 12 4n2-22 ++・・・+ 4n2 (2) lim +k (2) lim dx 1 = (2+2) 189 207 =1/-10g(2x)+10g(2+1)=1102/11083 1 nk=n+1k →頭に「一」 がつく理由は, 86 ポイント参照。 1 27 n -=lim n→∞nk=n+1k =lim 11 n―00 n k=n+1 k n --log-log2 精講 limΣの形をした極限値を求めるとき, Σ計算が実行できればよい のですが、そうでないときでもある特殊な形をしていれば極限値を k 公式によれば, n 積分の範囲が1→2となる理由を考えてみましょう。区分求積の 求めることができます. →とかわっています. だから, n→∞としたと k それが 「区分求積」といわれる考え方で,その特 殊な形とは YA きの n y=f(x), の範囲がxの範囲ということになります。 n+1sks2n n // ( n+1 nn において, lim 2n -=1, lim lim nk=1" (円) n→∞ n n→∞ n -=2 であることより, 1≦x≦2とな ります。 です. 右図で斜線部分の長方形の面積は1/12 (1) で表 12 nnk-1' 3x n k ポイント せます。 lim 1.2m)=f(x) dr n→∞nk=1 dx よって、21(h)は,図のすべての長方形の総和です。ここで,n(分割 x=1で囲まれた面積に近づくと考えられます。 以上のことから, lim 1 ½ ½ ƒ ( h² ) = f f ( x ) d x n→00 n k=1 ということがわかります. 数) を多くすると曲線より上側にはみでている部分はどんどん小さくなります。 そして最終的にはy=f(x), x軸, 2直線 x = 0, 参考 分割数を倍にすると幅が半 分になるので,この部分だ け小さくなる y=f(x) a b-a bx a+k. n x lim b-a n 12 00 n k=1 n f(a+k.ba) = f(x)dr 区分求積の公式の一般形は下のような形 ですが, 大学入試では上の形でできない ものは出題数が少なく、出題されてもか なりの上位校に限られていますので、ポイントの 形で使えるようになれば十分です. y=f(x) b-a n - a fla+k⋅ b - a). b-a 解 (1)(与式)=lim7_12 non k=1 4n-k² lim 12 1 n→∞nk=1 (k' 4- An 演習問題 113 Elim n+2k の値を求めよ. nwk=1n2+nk+k2 第6章

未解決 回答数: 1
数学 高校生

赤丸?のところ教えてください。

解答 基本 75 第n次導関数を求める (1) を自然数とする。 (1) y=sin 2x のとき, y''") =2"sin (2x+ nπ であることを証明せよ。 重要 2 (2) y=x" の第n 次導関数を求めよ。 /p.129 基本事項 1 重要 76, p.135 参考事 関数 計 yla は、yの第n次導関数のことである。そして、自然数nについての問題です。 から自然数nの問題 数学的帰納法で証明 の方針で進める。 (2)では,n=1,2,3の場合を調べてy(n) を 推測し、数学的帰納法で証明する。 注意 数学的帰納法による証明の要領 (数学 B) [1] n=1のとき成り立つことを示す。 [2] n=kのとき成り立つと仮定し, n=k+1のときも成り立つことを示す。 (1)y(n=2"sin(2x+ 22 が成り 指針 Sin nπ 2 ① とする。 (+1)=cos 2x sin(2x+/-) であるから,①は成り立つ。 解答 [1] n=1のとき y'=2cos2x=2sin [2]n=k のとき,① が成り立つと仮定するとy=2* sin(2x+k) n=k+1のときを考えると,②の両辺をxで微分して d axy/tl=2 cos(2x+ RT ごは 他に yy(k+1)=2k+1sin(2x+ RT π + 2 2 =2+1sin{2x+(k+1)x} よって、n=k+1のときも①は成り立つ。 ・次導関数]×[2]から、すべての自然数nについて ①は成り立つ。 (2) n=1,2,3のとき,順に められていy=x=1,y=(x)"=(2x)'=2・1, y=(x")"=3(x2)"=32-1 (2)はい したがって,y(n)=n! ① と推測できる。 n=1のとき y=1! であるから, ①は成り立つ。 [2] n=kのとき, ①が成り立つと仮定すると 求めるから) y(k)=k! すなわち dk x=k! dxk え、とりあえず y(k+1)= =k+1のときを考えると, y=xk+1で, (xk+1)=(k+1)xk であるから dk dk dr (dxx+1)= {(k+1)x*} =(k+1) dk dxk dxkx=(k+1)k!=(k+1)! よって, n=k+1のときも ①は成り立つ。 [1], [2] から すべての自然数nについて①は成り立ち y(n)=n! 75 (1) y=logx 練習 n を自然数とする。 次の関数の第 n次導関数を求めよ。 (2) y=cosr

解決済み 回答数: 1
数学 高校生

(4)でなんでこの解き方で解こうってなるんですか?この問題を初めて見た時どんな思考回路で解きますか?

108 面積 を実数とする. 放物線y=x-4.x+4 について,次の問いに答えよ. ・・1, 直線 y=mx-m+2......② (1)②はmの値にかかわらず定点を通る. この点を求めよ. (2) ① ②は異なる2点で交わることを示せ. (3) ①,②の交点のx座標をα, β(a<B) とするとき, ①,②で囲 まれた部分の面積Sをα, βで表せ. (4)Sをmで表し, Sの最小値とそのときのmの値を求めよ. 精講 -((+1)(-a)S (1) 37 ですでに学んでいます. 「mの値にかかわらず」 とくれば 「式をmについて整理して恒等式」 と考えます。 (2) 放物線と直線の位置関係は判別式を利用して判断します。 3) 106 ですでに学んでいますが,定積分の計算には101(2)を使います。 ■)21 (解と係数の関係)を利用します。 Ja +4)x+m+2}dx α, Bは, 2-(m+4)x+m+2=0 の2解だから =-f(x-a)(x-B)dx=(-a)³ 169 (V) eo 注 紙面の都合で途中の計算は省略してありますが,101 (2) のようにき ちんと書いてください。 (4) 解と係数の関係より, α+β=m+4,aβ=m+2_ 参考 S= (B-α)=(a+B)2-4aß= (m+4)2-4(m+2) =m²+4m+8 S=((Ba) 6 {(B-a)²)=(m²+4m+8) 3 6 .(*) {(m+2)2+4} 12 よりm=-2 のとき 最小値をとる。 3 (*)は,よく見ると(2)のDです. これは偶然ではありません. ax2+bx+c=0 (a>0) の2解をα, B(α <B) とすると, a==b-√D B=- -6+√D B-α= 2a -6+VD 2a 2a -b-D D 2a 解答 a (1)②より(-1)(y-2)=0 mについて整理 これがmの値にかかわらず成立するとき x-1=0, y-2=0 本間は α=1のときですから, (β-α)²=(√D)=Dとなるのは当然. このことからわかるように, 2解の差は判別式を用いて表すことも 可能で,必ずしも, α+β, aβ から求める必要はありません。 よって,mの値にかかわらず②が通る点は,(12) (2)①②より,yを消去して ポイント x2-4x+4=mx-m+2 2-(m+4)x+m+2=0 L- (x-a)(x-8)dr=-(-a)³ 判別式をDとすると, D=(m+4)2-4(m+2) =m²+4m+8 =(m+2)^2+4>0 <D>0 を示せばよい S= =∫{(mr-m+2)-(-4x+4)}d (2) よって、①と②は異なる2点で交わる. 2 右図の色の部分がSを表すので 演習問題 108 O a 1 2 2 BI (2) ①②のグラスで囲まれ 面積が となるようなαの値 y=4-x?...... ①, y=a-x (αは実数) ••••••② について 次の ものを求めよ. (1) ①,②のグラフが異なる2点で交わるようなαの値の範囲

解決済み 回答数: 1
数学 高校生

一対一対応の演習の微分問題です。 (イ)の(2)なのですが、f(α)-f(β)をするのは理解できるのですが、どうして積分が出てくるのか分かりません。誰か教えてください😭😭

このとき, a= 3 極値の条件から求める (ア) 3次関数f(x)=23+ar2+bx+cはx=1で極大値6をとり,r=2で極小値をとるとする。 =,b=,c= である. また, f(x) の極小値は □である。 (大阪産大) (イ) f(x)=x-3ar2+3bx について、 次の問いに答えよ. (1) f(x) が極値を持つ条件をα, b で表せ. (2) f(x)の極大値と極小値の差が4となるための条件を a, b で表せ. (鈴鹿医療科学大) f'(x) を主役にする f(x) が3次関数のとき, f (x)は2次関数になり, 極値をとるェの値が 1,2と与えられると,'(1)=f(2) = 0 となるので、f'(x)はほとんど決まってしまう. f(x)=2x+a2+bx+c の未知数a, b, c についての関係式を立てて a, b, c を求めるよりも、f'(x) を求めにいった方が手際よい. 3次関数の極値の差は導関数の定積分で f'(x) =0の解をα, β (α <β) とすると f(x)=a(x-a)(z-B)とおける.また, 極値の差は,f(a)-f(B)=fff'(x) dr である.こうと らえると,定積分の公式∫(エーα) (1-B) dr=-1/2 (B-α)を用いることができて計算が楽になる. (2)は多収式] 解答 18 (ア) f(x) = 2x3+ax2+bx+c...... ① f'(x)=6x2+2ax+b...... ② f(x)はx=1, 2で極値をとるから、 (x)=0の解がx=1,2となり, f'(x) は, (x-1)(x-2)で割り切れる。 ②で2次の係数が6であることから f'(x) =6(x-1)(x-2)=6x²-18x+12 因数定理 ②より 2a=-18, 6=12 . α=-9, b=12 zat4a-46 zat 2/a-b f(x)=2x3-9x2+12x+c 2 2 f(1) =6より, 2-9+12+c=6 .. c=1 極小値は, f (2) =2・23-9・22+12・2+1=5 (イ) (1) f'(x)=3(2-2ax+b) f'(x) =0が相異なる2実解を持つこ とが条件で, 判別式D>0. つまり、α-60 (2) f(x) =0を解いて,r=a±√d-ba=a- a=a-√√a²-b, B=a+√a²-b とおくと, f'(x)のxの係数が3であるから, f'(x) =3(x-α)(x-β) f(a)-f(B)=f(x)dx=∫3(エーα)(エーB)dr=2 (α-B)3 f(a)-- SS f(B) N |y=f(x) if(a)>f(B) >>√ª² (x-a) (x−B) dx €( 9 −zº / )v=e( 9—¿º (2) ² =¢( 0-8)= 極値の差が4であるから, 4(√2-634 S .. α-b=1 [6分の1公式]

未解決 回答数: 0
数学 高校生

【2】からよく分かりません。また、【3】でどうしたらS🟰の式がこのようになるのか教えて頂きたいです。

172 第6章 分 間 110 面積(M) 放物線y=a12a+2 (0<</2/2) ………① を考える。 精講 (1) 放物線 ①がαの値にかかわらず通る定点を求めよ。 ...... (2) 放物線①と円+y2=16 ② の交点のy座標を求めよ。 (3)a=1/2 のとき,放物線 ①と円 ② で囲まれる部分のうち、放物 線の上側にある部分の面積Sを求めよ. (1) 定数α を含んだ方程式の表す曲線が, αの値にかかわらず通る 定点を求めるときは,式を α について整理して, a についての恒 等式と考えます (37) (2) 2つの曲線の交点ですから連立方程式の解を求めますが,yを消去すると の4次方程式になるので, x座標が必要でも,まずxを消去してyの2次 方程式にして解きます。が、 E (3) 面積を求めるとき,境界線に円弧が含まれていると,扇形の面積を求める ことになるので,中心角を求めなければなりません.だから,中心Oと交点 を結んだ線を引く必要があります。もちろん,境界線に放物線が含まれるの で,定積分も必要になります. (2) 解答 し (1)y=ax2-12a+2 より a(x²-12)-(y-2)=0 これが任意のαについて成りたつので 2-12=0 ly-2=0 :.x=±2√3,y=2 よって, ①がαの値にかかわらず通る定点は (±2√3, 2) |y=ax²-12a+2... ① x²+ y²=16 ......2 ②より,㎡=16-y^だから,①に代入して αについて整理

回答募集中 回答数: 0