数学
高校生
解決済み

赤丸?のところ教えてください。

解答 基本 75 第n次導関数を求める (1) を自然数とする。 (1) y=sin 2x のとき, y''") =2"sin (2x+ nπ であることを証明せよ。 重要 2 (2) y=x" の第n 次導関数を求めよ。 /p.129 基本事項 1 重要 76, p.135 参考事 関数 計 yla は、yの第n次導関数のことである。そして、自然数nについての問題です。 から自然数nの問題 数学的帰納法で証明 の方針で進める。 (2)では,n=1,2,3の場合を調べてy(n) を 推測し、数学的帰納法で証明する。 注意 数学的帰納法による証明の要領 (数学 B) [1] n=1のとき成り立つことを示す。 [2] n=kのとき成り立つと仮定し, n=k+1のときも成り立つことを示す。 (1)y(n=2"sin(2x+ 22 が成り 指針 Sin nπ 2 ① とする。 (+1)=cos 2x sin(2x+/-) であるから,①は成り立つ。 解答 [1] n=1のとき y'=2cos2x=2sin [2]n=k のとき,① が成り立つと仮定するとy=2* sin(2x+k) n=k+1のときを考えると,②の両辺をxで微分して d axy/tl=2 cos(2x+ RT ごは 他に yy(k+1)=2k+1sin(2x+ RT π + 2 2 =2+1sin{2x+(k+1)x} よって、n=k+1のときも①は成り立つ。 ・次導関数]×[2]から、すべての自然数nについて ①は成り立つ。 (2) n=1,2,3のとき,順に められていy=x=1,y=(x)"=(2x)'=2・1, y=(x")"=3(x2)"=32-1 (2)はい したがって,y(n)=n! ① と推測できる。 n=1のとき y=1! であるから, ①は成り立つ。 [2] n=kのとき, ①が成り立つと仮定すると 求めるから) y(k)=k! すなわち dk x=k! dxk え、とりあえず y(k+1)= =k+1のときを考えると, y=xk+1で, (xk+1)=(k+1)xk であるから dk dk dr (dxx+1)= {(k+1)x*} =(k+1) dk dxk dxkx=(k+1)k!=(k+1)! よって, n=k+1のときも ①は成り立つ。 [1], [2] から すべての自然数nについて①は成り立ち y(n)=n! 75 (1) y=logx 練習 n を自然数とする。 次の関数の第 n次導関数を求めよ。 (2) y=cosr
y P = 2 sin(2x + 3 n=+1のときを考えると、 ②の両辺を火で微分して、 2 2 cos(2x + 1) d () FHL 2 dx 9 2 25(2x+5) q d dx (b) たら 1 2 皮+1 $+1 25+ cos(2x + x) =2 05(2x+聖 Cos (25) (4)² - 2 (2015+) … + 415 TV sin ct (641)72 = 22" sin (2x + (HUN) =2 h = p + [ a & & & & & & & より、すべての自然数 については成立

回答

疑問は解決しましたか?