学年

教科

質問の種類

数学 高校生

下の問題を二枚目の写真のように解きました。 このやり方だと,XとYの値が求めれなかったのですが,求め方はありますか? また,解説のように解く方がいいですか?

その 基本 89 した 00000 実数x,yx+y2=2を満たすとき, 2x+yのとりうる値の最大値と最小値を 求めよ。 また、そのときのx,yの値を求めよ。 指針 [類 南山大 ] 基本101 条件式は文字を減らす方針でいきたいが,条件式x2+y2=2から文 字を減らしても2x+yはx,yについての1次式であるからうま くいかない。 そこで, 2x+y=t とおき,tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 ← 2x+y=t を y=t-2x と変形し,x2+y2=2に代入してyを消 去すると x2+(t-2x) =2となり,xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 見方をかっ CHART 最大 最小 =tとおいて,実数解をもつ条件利用 20 2x+y=t とおくと y=t-2x ① 解答 これをx2+y2=2に代入すると したがって x2+(t-2x)=2 整理すると 次 5x2 -4tx+t2-2=0 自去す このxについての2次方程式 ② が実数解をもつための 条件は、②の判別式をDとすると (+)=S+ツの不等式)。 (2) D≧0 ここで D=(2t)-5(2-2)=-(t-10) D≧0から 参考実数a, b, x, yに ついて,次の不等式が成り 立つ (コーシー・シュワル CONCE(ax+by)≤(a+b)(x²+ y²) [等号成立は ay=bx ] この不等式に a=2,6=1 (を代入することで解くこと できる。 t2-10≤0 フェ これを解いて -√10 ≤t≤√10 t=±√10 のとき, D=0で,②は重解 x=- -4t_2t を のとき②は t=±√10 2.5 5 もつ。=±√10 のとき x=± 2/10 よって 5x2+4√10x+8=0 よってまたは 5 /10 ①から y=± (複号同順) 5 よって x= 2/10 10 y= のとき最大値10 主 ゆえに 2√2 2/10 x=± =土・ 5 √ 10 5 ” 5 2/10 √10 x=- 5 " y=- のとき最小値√10 √5 ①からy=土- 5 (複号同順) 5 としてもよい。 である。 たすとき の

解決済み 回答数: 1
数学 高校生

数IIの問題です 棒線部分の一致するときを どうして考えないといけないのでしょうか 対象な点と問題にあるので、点PとQは一致する場合を考える必要はあるのでしょうか

例題 100 直線に関する対称移動 x+y=1 に関して点Qと対称な点をPとする。 点Qが直線 2y+80 上を動くとき、点Pは直線[ CHART & SOLUTION 対称 直線に関して PとQが対称 [[1] 直線 PQ がに垂直 [2] 線分 PQ の中点が上にある 上を動く。 000 基本 Qが直線x-2y+80 上を動くときの, 直線 l x+y=1 に関して点Qと対称な点 Pの軌跡、と考える。 つまり, Q(s, t) に連動する点P(x, y) の軌跡 ①s, tax,yで表す。 ②x,yだけの関係式を導く。 直線x-2y+8=0 ...... ① 上を動く点をQ(s, t) とし, 直線 x+y=1 2 に関して点Qと対称な点を P (x, y) とする。 4」 inf線対称な直線を求め ①るには、 EXERCISES Q(s,t) あるが、左の解答で用いた 軌跡の考え方は、直線以外 71 (p.137) のような方法も 1 の図形に対しても通用する [1] 点PとQが一致しない とき, 直線 PQ が直線 ② に垂直であるから -8 01 /P(x,y) t-y.(-1)=-1 垂直傾きの積が一 S-XC 線分 PQ の中点が直線②上にあるから x+y+t=1 2 2 ④ s-t=x-y ④から ③から s+t=2-(x+y) s, tについて解くと s=1-y, t=1-x また,点Qは直線 ①上の点であるから ⑤⑥に代入して すなわち s-2t+8=0 •••••• ⑥ (1-y)-2(1-x)+8= 0 2x-y+7=0・・・ ⑦ ] 点PとQが一致するとき, 点Pは直線 ①と②の交点 であるから x=-2,y=3 これは⑦を満たす。 なぜ一致するとき考える 上から, 求める直線の方程式は 2x-y+7=0 線分 PQ の中点の座標 (2/4) 上の2式の辺々を加え ると 2s=2-2y 辺々を引くと -21=2x-2 ← s, tを消去する 方程式①と②を させて解く。 BACTICE 100

解決済み 回答数: 1
数学 高校生

cos2分のθを求める問題で、半角の公式を使うところまではできたのですが、cosθをどう変えれば良いのかわからなくなったので教えて欲しいです

213 131 で sing 2倍角、半角、3倍角の公式 のとき, sin 20, cos- 0 3 2' JMART & SOLUTION 半角、3倍角の公式 sil coso, tan の値が基本 sincost, cos20 00000 cos30 の値を求めよ。 p.208 基本事項 31 cos30=-3cos0+4cos' であるから、まず 1+cos = 2 2 求める必要がある。 また, 符号に注意。 π 0 4 ちから cose<0 << cos>0 であるから cos <0 2√2 VI- (1) --2.2 3 3 1/2-2/2)=46/2 3 cost=-√1-sino= == 1- って えに sin20=2sinocos0=2・ 2√2 3 2√2 1- に COS 12 3 3-2√2 6 sin²0+cos20=1 4√2 2倍角の公式 9 40 17 加法定理 2 <B<πより, って COS 82 4 1+cos 0 023 2 -2 πT であるから 2 半角の公式 0 cos >0 の範囲に注意。 √√6 √6 3-2√2/3-2/22-1 6 2√3-√6 6 = cos30=-3cos+4cos'0 FORMATION --3.(2/2) +1(-2,2)-10/2 =-3· 3 √3-2√2 =√(√2-1)2 =√2-1 (2重根号をはずす) 3倍角の公式 忘れたら, 加法定理から \3 27 導く。 p.220 PRACTICE 138 参照。 三角関数の公式を導く 一角関数に関連する2倍角, 半角, 3倍角などの公式はたくさんある。 そのすべてを する必要はない。 元となる加法定理から導けるよう, 導き方を頭に入れておこう。 ■p.224 まとめ 参照) NCTICE 131 sin 30 の値を求めよ。

解決済み 回答数: 1