学年

教科

質問の種類

数学 高校生

【確率統計】 (シ)(ス)が分からないです。XiはわかるのですがXが何を示しているのかがわからないです。

選択問題) (配点 16) いずれか3問を選択し, 解答しなさい。 以下の問題を解答するにあたっては,必要に応じて19ページの正規分布表を用 いてもよい。 太郎さんと花子さんには, 共通で好きなお菓子がある。 そのお菓子は1個ずつ包 装された5個が1つの箱に入って売られている。 そのお菓子にはある割合で特別な 味付けのものが混じっている。 特別な味付けのお菓子は無作為に箱に入れられ, 1 つの箱に1個もないこともあれば2個以上のときもある。特別な味付けのお菓子の 割合は1/3の割合といわれているが,2人は常々もっと少ない割合ではないかと感 じていた。そこで2人は,友達や家族の力も借りて特別な味付けのお菓子の個数の 情報を集め, 検討してみることにした。 2人は調査を始める前に,有意水準と棄却域について自分たちなりの考えをまと めておくことにした。 数学Ⅱ・数学B 数学 C 2人は,どの包装についても確率で特別な味付けのお菓子が,確率 1-Dで普 通のお菓子が入っているように 0 <<1である定数を定められると仮定して, =1であることを帰無仮説, カキ 1/3であることを対立仮説として有意水準5%の 両側検定で判定することにした。 2人は情報を集めた 80 箱分400 個のお菓子における特別な味付けのお菓子の個 数が70個であることを確かめた。 どの包装についても確率 1/3で特別な味付けのお 5 菓子が入っており,確率で普通のお菓子が入っていると仮定する。 包装1個ご とに1以上400以下の整数を1つずつ割り振り, 数えごとに確率変数 X を, 数 iが割り振られた包装1個が特別な味付けのお菓子だったら値 1, 普通のお菓子だ ったら値0をとる確率変数として定める。 さらに X=X1+X2+... + X 400 により確 率変数Xを定める。 X, X の期待値 E (Xi), E (X)についてE(X)= 80 コ サ (i=1, 2,…,400) であり E(X)=シス である。 また, Xi, X の分散 V (X), 96 太郎 模擬試験などで使われる偏差値は50+ 計算されるそうだよ。 花子: 正規分布表から標準正規分布における有意水準 5% の両側検定におけ る棄却域は- ア イウ 以下または ア イウ 以上だから, 一般の正規分布における有意水準 5% の両側検定における棄却域は, 偏差値で表現すればエオ カ以下または キク 以上と (個人の得点)-(平均点)×10で (標準偏差) セ V(X)について V(X)= 040円 (i=1, 2, ..., 400) であり V(X)=チッで ソタ ある。 400 を十分に大きい数とみてXの確率分布は期待値シス標準偏差 テ の正規分布で近似できる。 よって実際に特別な味付けのお菓子が400個中 70 個だ ったことから有意水準 5% の両側検定により ト 5 。 なるね。 30 4 69 6 太郎: 模擬試験について調べるときに受験者から無作為に1人選ぶとして, そ れなりに選ばれそうな範囲だね。 ト の解答群 400.3 花子 : 私たちはあまり強い表現は用いないことにして, 数値が棄却域に属する ときは 「仮定を疑わせる結果となった」, 棄却域に属さないときは 「仮 定を疑わせる結果とはならなかった」と述べることにしよう。 ⑩仮定を疑わせる結果となった ① 仮定を疑わせる結果とはならなかった 0.475 (数学Ⅱ・数学B 数学C第5間は次ページに続く。) 20.95 (数学Ⅱ・数学B 数学C第5間は次ページに続く。) 400 1,46×10+50 =-19,6+50 69.6 -16- <-17-

解決済み 回答数: 1
数学 高校生

【統計的な推測】 確率変数XiとXってなんなんですか? 何が違うんですか? 頭の悪い質問ですみません🙋

第5問 (選択問題) (配点 16) いてもよい。 問~第7問は,いずれか3問を選択し, 解答しなさい。 以下の問題を解答するにあたっては, 必要に応じて 19ページの正規分布表を用 太郎さんと花子さんには,共通で好きなお菓子がある。 そのお菓子は1個ずつ包 装された5個が1つの箱に入って売られている。そのお菓子にはある割合で特別な 味付けのものが混じっている。 特別な味付けのお菓子は無作為に箱に入れられ,1 つの箱に1個もないこともあれば2個以上のときもある。特別な味付けのお菓子の の割合といわれているが, 2人は常々もっと少ない割合ではないかと感 そこで2人は,友達や家族の力も借りて特別な味付けのお菓子の個数の 情報を集め、 検討してみることにした。 1 割合は 2人は調査を始める前に,有意水準と棄却域について自分たちなりの考えをまと 止めておくことにした。 数学Ⅱ・数学B 数学 C 2人は, どの包装についても確率で特別な味付けのお菓子が, 確率 1-で普 通のお菓子が入っているように0 <<1である定数を定められると仮定して p=1/3であることを帰無仮説 = 1/3であることを対立仮説として有意水準5%の 両側検定で判定することにした。 2人は情報を集めた 80 箱分400個のお菓子における特別な味付けのお菓子の個 数が70個であることを確かめた。 どの包装についても確率 1/3で特別な味付けのお 菓子が入っており,確率 で普通のお菓子が入っていると仮定する。 包装1個ご とに1以上400以下の整数を1つずつ割り振り, 数えごとに確率変数X を, 数 えが割り振られた包装1個が特別な味付けのお菓子だったら値 1, 普通のお菓子だ ったら値0をとる確率変数として定める。 さらに X = X1+X2+ ・・・ + X 400 により確 率変数Xを定める。 X, Xの期待値 E (Xi), F(X)について E (X)= コ (i=1, 2, ..., 400) であり E (X)= シス である。 また, Xi, X の分散 V(X), 太郎 : 模擬試験などで使われる偏差値は50+ 計算されるそうだよ。 (個人の得点) (平均点)、 (標準偏差) ×10 で (X)について V(X)= セ ソタ (i=1, 2,.., 400) であり V(X)= チッ で 花子: 正規分布表から標準正規分布における有意水準 5% の両側検定におけ 96 る棄却域は ア イウ 以下または ア イウ 以上だから, 一般の正規分布における有意水準 5% の両側検定における棄却域は, 偏差値で表現すればエオ カ 以下または キク ある。 400 を十分に大きい数とみてXの確率分布は期待値 シス 標準偏差 テ の正規分布で近似できる。 よって実際に特別な味付けのお菓子が400個中 70 個だ ったことから有意水準5%の両側検定により ト 。 以上と 400- なるね。 30 の解答群 69 太郎: 模擬試験について調べるときに受験者から無作為に1人選ぶとして, そ れなりに選ばれそうな範囲だね。 4. 6 ⑩仮定を疑わせる結果となった 花子: 私たちはあまり強い表現は用いないことにして, 数値が棄却域に属する ときは 「仮定を疑わせる結果となった」, 棄却域に属さないときは 「仮 定を疑わせる結果とはならなかった」と述べることにしよう。 ①仮定を疑わせる結果とはならなかった 0405 1.96×10+50 =-19,650 (数学Ⅱ・数学B 数学C第5問は次ページに続く。) 20.95 69,6 -16- (数学Ⅱ・数学B 数学C第5間は次ページに続く。) -17- 400

解決済み 回答数: 1
数学 高校生

解の公式の形において2枚目の3問目の様に3つとも約分可能でなければ約分してはいけないのでしょうか 2枚目の追加画像は分母「2」と分子「4」と「1」なので約分せずそのままなのでしょうか

15:56 6月10日 (月) detail.chiebukuro.yahoo.co.jp その他の回答 (2件) tytytyさん 2010/6/24 15:43 約分ってのは 分子と分母に同じ数で割ることなので (1)の分子は (9±√/21)で分母は6ですね なので仮に3で約分 (3で分子と分母を割る)すると 分子は (9±√21)÷3 となりさらに分数ができてしまいます。 よって (1) は約分できません。 同じように(2)も約分できません。 しかし解答が約分してあるなら 5/4(2√/23)/4と分けて 5/4±(√23)/2とするしかありません。 参考になる 1 men********さん ありがとう 感動した 面白い 0 新しい順 51% 2010/6/24 15:34 あなたの意見の「3つとも約分可能でなければ約分してはいけない」は正解です。 【2】 の約分は出来ません。 約分するのであれば、分母を2つに分けて 5/4(2/23)/4と分ければしてもよいです。 解答が間違っているか、5の部分が、 別の偶数だったりするのではないでしょうか。 参考になる ありがとう 感動した 0 0 0 あわせて知りたい ④ TOYOTA ふさがりがち。 自動開閉がうれしい! SIENTA 家族で笑った! シエンタ! トヨタ自動車株式会社 面白い

解決済み 回答数: 1
数学 高校生

問6と問9だけ教えて頂きたいです!

一般教養問題B (答えは解答欄に記入のこと) 問題 1 定価2,000円の商品を、 実際には定価の40%引きで売りました。 この商品の販売価格はいく らでしょうか。 問題2 ある植物園の入園料は、1人あたり4,500円だが、 10人を超す団体の場合、 全員が2割引き となります。 15人で入園するときの入園料の総額はいくらでしょうか。 問題3 A さんがオートバイで日町を出発して、K町まで時速40kmで向かい、 1時間30分かかりまし た。 K町までの距離は何kmでしょうか。 問題4 家から学校までは、 真北へ分速80m で 10分進み、 そこから真東へ分速 50mで12分進めば到 達します。 家から学校までの最短距離は何でしょうか。 問題5 ある数字Xがあります。 このXに5を足して8を掛けたものと、 Xに12を掛けて16を引い したものは等しくなりました。 このとき、 ある数字Xはいくらでしょうか。 9 問題6 原価が1,000円の商品に、定価で売れたら 600円の利益が出るように定価をつけました。 こ の商品を定価の10%引きで売ったとき、 この商品1個あたりの利益はいくらでしょうか。 問題7 家族3人の年齢を合わせると 95歳です。 父は母より5歳年上であり、 母は子どもの年齢の4 倍です。 母の年齢は何歳でしょうか。 問題8 ある運動部には部員が5人います。 この中からある大会の出場者2人を選ぶ場合、 選び方は 何通りありますか。 問題9 矢を的に当てるゲームをしました。 的に当てると5点もらい、外れると2点引かれます。 A さんは20回矢を放って9点を得ました。 的に当たったのは何回でしょうか。 問題10 ある中学校では、全校生徒の60%が甲小学校出身で、その数は300 人である。 このとき、 全校生徒の15%である乙小学校出身者は何人でしょうか。 10

解決済み 回答数: 1
1/3