学年

教科

質問の種類

英語 高校生

対数関数の問題です。 194例題についてですが、最後実数解の個数が3個4個になっている理由がわかりません。y=aとy=-t2+2tの共有点の個数=実数解の個数だと思っていたのですが、

000 演習 例題 194 対数方程式の解の個数 の解をも 本女子大] 基本173 なるとの る。 よい。 00000 aは定数とする。 xの方程式{log2(x2+√2)}-210g2(x2+√2) +α=0 の実数 解の個数を求めよ。 指針 前ページの演習例題 193 同様, おき換えにより, 2次方程式の問題に直す。 変数のおき換え 範囲に注意 log2(x+√2)=t とおくと, 方程式は t2-2t+α=0 ...... (*) 基本183 22 から, tの値の範囲を求め, その範囲におけるtの方程式 (*)の解の個 数を調べる。 それには, p.239 重要例題 149 と同様, グラフを利用する。 なお、10g2(x2+√2)=t における x と tの対応に注意する。 log2(x2+√2)=t t2-2t+α=0 ① とおくと, 方程式は より,x2+√√2 であるから log2(x2+√2) log2√2 y=f(t) したがって ② また、①を満たすx の個数は,次のようになる。 = 1/12 のとき x=0の1個, 311 20 t -2)²+5a-10 11/23のときx>0であるから -2t+α=0から 2個 -t2+2t=a x2+√22より x=2√2 であるから 1/1/2のとき x=0 t= 11/21のときx>0 よってx=±√2-√2 y↑ よって、②の範囲における, 1 放物線y=-t+ 2t と直線y=a 3-- y=a <直線y=α を上下に動か 4 の共有点の座標に注意して, a して共有点の個数を調 べる。 方程式の実数解の個数を調べると, 01 1 32 t 2 2 a>1のとき0個; 5a+6 3 a=1, a<- のとき2個; 共有点なし。 11/23 である共有点1個 3 る。 4 a=2のとき3個; 3 <a<1のとき4個 2 11/23 である共有点2個。 つの実数解をも a. 6は定数とする。 xの方程式 (10g2(x2) -alog2(x+1)+a+b= 0 が異なる 2つの実数解をもつような点 (a, b) 全体のを,座標平面上に図示せよ。 p.312 EX 125 5章 33 関連発展問題 城 に

回答募集中 回答数: 0
英語 高校生

解答では背理法を使っているのですが、この証明方法でも大丈夫でしょうか?

117 次の等式を満たす有理数 p, qの値を求めよ。 第2章 集合と命題 29* 113 実数 x が正の無理数であるとき, /x は無理数であることを証明せよ。 STEPくB 例題 13 nは整数とする。次の命題を証明せよ。 n°が3の倍数ならば, nは3の倍数である。 対偶を証明する。3の倍数でない整数nは, 3k+1, 3k+2(kは整数)のいずれかの 形で表される。 対偶「nが3の倍数でないならば, n° は3の倍数でない」 を証明する。 nが3の倍数でないとき, nはある整数えを用いて 3k+1, 3k+2のいずれかで表さ 指針 解答 れる。 こ de [1] n=3k+1のとき n=(3k+1)°=27k°+27k°+9k+1=3(9°+9k°+3k)+1 9°+9k°+3kは整数であるから,n°は3の倍数でない。 12」 n=3k+2 のとき ケ効半ふ 変 n°=(3k+2)°=27k°+54k°+36k+8=3(9k°+18k?+12k+2)+2 9°+18k°+12k+2は整数であるから, n° は3の倍数でない。 よって,対偶は真である。したがって,もとの命題は真である。終 114 m, n は整数とする。次の命題を証明せよ。 (1) n?が5の倍数ならば, nは5の倍数である。 *(2) mn が3の倍数ならば, m, nの少なくとも一方は3の倍数である。 115 V6 が無理数であることを用いて,V3-V2 は無理数であることを証明せ 太関 よ。 T16 p, gが有理数,Xが無理数で, か+qX=0 であるならば, カ=q=0 であるこ とを証明せよ。 =1 1)0ta?=2+V2 2-1

未解決 回答数: 1
1/2