学年

教科

質問の種類

数学 中学生

式の立て方のコツとか色々教えてください! あと、社会の勉強はどんな感じにしたらテストでいい点取れますか!!教えてください!

1-16 式の計算 式の計算の利用④ 要点 ー連続する数・偶数 奇数一 文字を利用して、 数の性質について証明することができる。 証明をするときは、使う文字を自分で決めて、その文字を使って数を表す。 nを整数とするとき、連続する数の表し方 ①連続する3つの整数n-1,n,n+1 「連続する」 のとき,文字は1つ ②連続する2つの偶数 2, 2n+2 ③連続する2つの奇数 2n-1, 2n+1 文字を使った証明 4の倍数であることを証明するとき→4×整数 偶数であることを証明するとき→2×整数 奇数であることを証明するとき→2×整数+1 または 2×整数-1 Point 連続する2つの偶数の大きい方の偶数の2乗から小さい方の偶数の2乗をひいた差は4 あることを証明せよ。 <解答> 証明は、以下の [内の文章全体になる。 n を整数とすると, 連続する2つの偶数は, 2n, 2n+2 と表せる。 大きい方の偶数の2乗から小さい方の偶数の2乗をひ いた差は, (2n+2)-(2n)2=4n²+8n +4-4 n² =8n+4 =4(2n+1) 2n+1は整数だから, 4(2n+1)は4の倍数である。 したがって,連続する2つの偶数の大きい方の偶数の 2乗から小さい方の偶数の2乗をひいた差は, 4の倍数 である。 標準問題 続する2つの奇数の大きい方の奇数の2乗から小さい方の奇数 とを,次のように証明した。 使う文字を自分で決める。 問題文に指定があれば, 指示 文字を使って数を表す。 問題文にあるとおり 「4の倍数」 の意味 4×整数の形に式を 「4の倍数」に 説明したことがら (問題文 そのまま書く。

回答募集中 回答数: 0
英語 中学生

どうやって覚えたらいいですか。

3年生ま ※1・2年生で登場したはページをイタリ ※1・2年生ですでに学んでいて、3年生では登場しない! 過去分詞形 cutting 33 Stand 過去形 cut hitting teach 現在形 10 QUEER ☐ tell stand(s) cut hit hurting 21 A-A-A THE PRI ☐ チェックページ cut(s) hit hurt letting 50 think teach(es) cut 59 hit(s) hurt let putting 34 think(s) hit hurt(s) let put 85 reading win D hurt let(s) put read D ②② let put(s) setting A-B-C read set D 8 put read(s) set チェックページ ☐ 23 read set(s) D 2 set □ D コ 16 come 7 63 run A-B-A チェックページ 23 become become(s) became come(s) run/s) 原形 現在形 過去形 過去分詞形 came ran become come 現在分詞形 becoming 11 原形 ☐ be 31 現在形 ☐ coming running 36 begin am/is/are understand tell(s) 過去形 stood told thought understand(s) understood win(s) won 過去分詞形 stood taught told thought standing understood teaching telling taught 現在分詞形 won thinking 過去形 understan winning bear ☐ run ☐ 736 begin(s) break bear(s) was/were began 過去分詞形 been 900 choose break(s) bore begun being 現在分詞形 ☐ do 31 choose(s) broke bom begin 過去分詞形 ☐ 過去形 B-B型 ページ 30 63 bring 現在形 原形 bought bought buying 27 buy's) buy bring(s) brought brought bringing ☐ 178 draw do(es) chose broken bear drink draw(s) did chosen brec building ☐ eat drink(s) drew done cho build(s) built built 51 build catch(es) caught caught catching ☐ 57 digging ☐ ②② catch dug dig(s) dug feeling ☐ felt ② dig feel(s) felt ¥2 feel 4 fight fight(s) fought fought fighting ☐ 5247 12 fall eat(s) drank drawn do fly fall(s) ate drunk dr ② forget fly/flies fell eaten d get forget(s) flew fallen find find(s) found found finding ☐ give get(s) forgot flown had having ☐ 75 have have/has had hear hear(s) heard heard hearing ☐ hold hold(s) held held holding ☐ 4334 go give(s) got forgotten go(es) gave gotten/got given grow went hide grow(s) gone grew keep keep(s) kept kept keeping know hide(s) grown hid ☐ eave leave(s) left left leaving 12 ride know(s) hidden knew ☐ se lose(s) lost lost losing ake make(s) made made making an mean(s) meant meant meaning et meet(s) met met meeting d rebuild(s) rebuilt rebuilt rebuilding say(s) said said saying sell(s) sold sold selling send(s) sent sent sending sit(s) sat sat sitting sleep(s) slept slept sleeping spend(s) spent spent spending 0000000000 10 52 602223 ride(s) known see rode see(s) ridden show saw sing show(s) showed seen shown 29 sing(s) speak sang Sung 2 steal speak(s) spoke spoker 37 swim steal(s) stole stolen swim(s) Swam SWUm 4 take take(s) took taken ①②1 throw throw(s) threw throw 2 wake wake(s) woke wok 49 wear wear(s) wore WO 10 write write(s) wrote WT

解決済み 回答数: 1
数学 中学生

大問5:1次関数の問題です。(2)の①の解説に点Qは(0,t+6)になると書いてあります。なぜそうなるのか教えていただきたいです。よろしくお願いします。

によせて考えよ 立てやすくなる。 次関数 きは だから 8 とすると、 Q.1+6) と表せる。 06-1-6 OC-8より、 (+6)×8-414-24 OAと変わる場合と、辺AB と交わる OA上にあるとき、 つまり、 場合に分けて考える。 6のとき、 0 ①より、 SA1+24-30 t= 3 まけ (2)300cm² (1) 図2のya15のとき のグラフの傾きと等し 通る直線を く、 かけばよい。 (2) (1)より おもりの入 っていない水そうでは O 123456789101112131415 12分で満水になるから、1分間に入る水の量は、 30×30×30 ÷12=2250(cm) 0 <新潟県> き,y 高知県 > 県〉 平行な辺をもつ長方 おもりを入れた場合は10分で満水になるので おも 27 長さを求めなさい。 ただし, 原点0から点 (1, 0) までの距 および原点から点 (0, 1)までの距離をそれぞれ1cmと する。 T 教 <千葉県 改 (10点) 右の図のように, 4点0(0,0), A(0, 12), B-8, 12), 0 ) を頂点とする長方形と直線lがあり、直線の C(-8 5. 輝きは 3 である。 次の問いに答えなさい。 せっぺん <福島県> (10点×3) 直線が点C を通るとき,lの切片を求めなさい。 ②辺BCと直線lとの交点をPとし,Pのy座標をtとする。 y A 学 12 国 また,lが辺 OA または辺AB と交わる点を Qとし、∠OQP の面積をSとする。 ①点Qが辺 OA上にあるとき, Sをt の式で表しなさい。 ②S=30 となるtの値をすべて求めなさい。 図1のように、立方体の水そうがあり、その中 6 に直方体の鉄のおもりが入っている。この水そ うに毎分一定の割合で水を入れたところ, 10分後に 満水になった。 水を入れ始めてからx分後の水そう 水の深さをycm とする。 図1の水そうに水を入 30 15 0 4 図2 図 1 れ始めてから満水になるまでのxとyの関係をグラフで表すと図2のようになった。 鉄 もりの高さが15cm, 水そうの1辺の長さが30cmであるとき 次の問いに答えなさい だし。水そうは水平に置き 水そうの厚さは考えないものとする。 鉄のおもりのみ <愛知県> ( 10 これと同じ水そうに空の状態 30

未解決 回答数: 1
1/500