学年

教科

質問の種類

数学 高校生

解答は私が(ⅲ)で書いてあるところをcos²θで書いてあるんですけど、私のやり方の(ⅰ)〜(ⅲ)でも最終的に共通範囲を求めるとsinθ=1は含まない形になっているのですが、丸になりますか?? お願いします🙇‍♀️

148─数学Ⅰ 練習 0°≦180° とする。 xの2次方程式x2+2(sin0)x+cos'0=0が, 異なる2つの実数解を 151 それらがともに負となるような母の値の範囲を求めよ。 f(x)=x2+2(sin0)x+cos20とし, 2次方程式f(x)=0の判別 ①グラフ利用 式をDとする。 2次方程式f(x) = 0 が異なる2つの負の実数 D, 軸, f(k) に 解をもつための条件は,放物線y=f(x) がx軸の負の部分と, 異なる2点で交わることである。 すなわち、次の [1], [2], [3] が同時に成り立つときである。 [1] D>0359180 [2] 軸がx < 0 の範囲にある (軸)<0 [3] f(0) > 0 また, 0°0180°のとき 0≦sin0≦1…... ① D [1] 4 -=sin20-1 cos20=sin²0-(1-sin20) =2sin20-1=(√2 sin0+1) (√2 sin0-1) 1 D> 0 から sin < 1 - <sine.. ② 2√2 [2] 放物線の軸は直線x=-sin 0 であるから -sin0 < 0 よって [3] f(0) >0 から cos²0>0 すなわち cos 0=0 sin0> 0 ③ 0° 0≦180°であるから 0+90°... ① ② ③ の共通範囲を求めて ..... ④ 1/12 <sin01 0°≦180°であるから 45°<<135° ④に注意して, 求めるの値の範囲は 45°<0<90° 90°<0 <135° 9 YA 135°1 45 -1 0

解決済み 回答数: 1
1/567