学年

教科

質問の種類

数学 高校生

D=0としたときは2つの与式が接する場合だとはわかりますが、これで(0,3)で接するのはなぜ含まれていないのでしょうか

164 重要 104 放物線と円の共有点接点 放物線y=x+αと円x+y=9について、次のものを求めよ。 (1)この放物線と円が接するとき、 定数αの値 (2)異なる4個の交点をもつような定数の値の範囲 指針 放物線と円の共有点についても、これまで学習した方針 接点 共有点実数解 で考えればよい。 この問題では、xを消去して、yの2次方程式(yu)+データの 実数解解を考える。 放物線の頂点はy軸上にあることにも 注意。 (1)放物線と円が接するとは、円と放物線が共通の接線をも つことである。この問題では、右の図のように、2点で接する 場合と1点で接する場合がある。 (2)放物線を上下に動かし、(1)の結果も利用して条件を満たす の値の範囲を見極める。 0001 147 接する 2点です xを消去すると、 (1) y=x'+α から x=y-a 解答 これをx+y=9に代入して よって y²+y-a-9=0 ここで,x2+y=9から (y-a)+y2=9 次方程式が導かれる。 ① x2=9-20 ゆえに -3≤y≤3 [1] 放物線と円が2点 [1] で接する場合 D [2] a=-3 34 2次方程式 ①は②の 3 3 3- 範囲にある重解をもつ。3 よって、 ①の判別式を 13 0 0 AM -3 13 -30 Dとすると D=0 D=12-4-1-(-a-9) =4a+37 37 であるから 4+370 すなわち a=― 4 このとき、①の解はy=- 12となり、②を満たす。 2次方程式 by² +qy+r=00 [2] 放物線と円が1点で接する場合 重解はya- 図から, 点 (0.3), (0, -3) で接する場合で α=±3 以上から、求めるαの値は a1- (2) 放物線と円が4個の共有点をもつのは,右の図から、 頂点の座標に 34 37 ±3 4 放物線の頂点 (0, 4)が,点 (0.2) から点 (0-3) を結ぶ線分上 (端点を除く)にあるときである。 したがって -37 <a<-3 4

未解決 回答数: 1
数学 高校生

(2)で黄色い付箋が貼ってあるところの「ここで〜となり」の範囲を確認している部分がなんそうなっているのかわかりません。後右ページ上から2行目から3行目の計算の仕方がわかりません

基礎問 110 面積(M) 放物線y=ax2-12a+2 (0<a</ ......① を考える. y=uv y 14042 ay2+y-2(2α+1)=0 ..(y-2) (ay+2a+1)= 0 .. y=2, −2-17= 201 a a -20-=-2-4 (1)放物線 ①がαの値にかかわらず通る定点を求めよ. (2) 放物線①と円 2+y2 =16・・・ ② の交点のy座標を求めよ. (3)a=1/12 のとき,放物線 ①と円 ②で囲まれる部分のうち、放物 精講 線の上側にある部分の面積Sを求めよ. (1)定数αを含んだ方程式の表す曲線が, aの値にかかわらず通る 定点を求めるときは、式をαについて整理して,aについての恒 等式と考えます (37) (2) 2つの曲線の交点ですから連立方程式の解を求めますが,yを消去すると の4次方程式になるので, 座標が必要でも,まず』を消去してyの2次 方程式にして解きます。 (3)面積を求めるとき,境界線に円弧が含まれていると, 扇形の面積を求める ことになるので, 中心角を求めなければなりません. だから, 中心〇と交点 を結んだ線を引く必要があります.もちろん、 境界線に放物線が含まれるの で,定積分も必要になります。 ここで, 2</1/12より-2-1/2-4となり,円+g=16 上の点 _1は不適よって, y=2 y=-2- (3)a=1/12 のとき,①は y=1/1 (1)(2), ①,②の交点は (A(2√3,2), B(-2√3, 2) AOB=120° だから 2√3 S=2.5" {2-(1-1)) は-4≦y≦4 をみたす y 4 2 B4.... A d.x +(x-4³. 120-4-4-sin 2) +(7.42.120 360 12/3 16 3 --+6]+6x-4√3 =24√3+12√3+1-4√3 6 16 =4√3+10% x -1 解答 (1) y=ar2-12a+2 より ポイント a(x²-12)-(y-2)=0 <aについて整理 これが任意のαについて成りたつので 2-12=0 y-2=0 x=±2√3,y=2 演習問題 110 よって, ① がαの値にかかわらず通る定点は (±2√3, 2) y=ax²-12a+2.....① (2) |r2+y2=16 ......② ②より, z=16-y だから, ①に代入して 境界に円弧を含む図形の面積は,中心と結んで扇形の 面積を考えるので、中心角が必要 2次関数 f(x)=x'+ax+b が条件f(1)=1, f'(1)=0 をみた すとする.また,方程式-2x+y-2y=0 が表す円をCとする. (1) α, bの値を求めよ. (2)y=f(x)のグラフと曲線Cで囲まれる部分の面積のうち,放 物線の下側にある部分の面積Sを求めよ. JmHe

回答募集中 回答数: 0
数学 高校生

【2】からよく分かりません。また、【3】でどうしたらS🟰の式がこのようになるのか教えて頂きたいです。

172 第6章 分 間 110 面積(M) 放物線y=a12a+2 (0<</2/2) ………① を考える。 精講 (1) 放物線 ①がαの値にかかわらず通る定点を求めよ。 ...... (2) 放物線①と円+y2=16 ② の交点のy座標を求めよ。 (3)a=1/2 のとき,放物線 ①と円 ② で囲まれる部分のうち、放物 線の上側にある部分の面積Sを求めよ. (1) 定数α を含んだ方程式の表す曲線が, αの値にかかわらず通る 定点を求めるときは,式を α について整理して, a についての恒 等式と考えます (37) (2) 2つの曲線の交点ですから連立方程式の解を求めますが,yを消去すると の4次方程式になるので, x座標が必要でも,まずxを消去してyの2次 方程式にして解きます。が、 E (3) 面積を求めるとき,境界線に円弧が含まれていると,扇形の面積を求める ことになるので,中心角を求めなければなりません.だから,中心Oと交点 を結んだ線を引く必要があります。もちろん,境界線に放物線が含まれるの で,定積分も必要になります. (2) 解答 し (1)y=ax2-12a+2 より a(x²-12)-(y-2)=0 これが任意のαについて成りたつので 2-12=0 ly-2=0 :.x=±2√3,y=2 よって, ①がαの値にかかわらず通る定点は (±2√3, 2) |y=ax²-12a+2... ① x²+ y²=16 ......2 ②より,㎡=16-y^だから,①に代入して αについて整理

回答募集中 回答数: 0
数学 高校生

【高2数学・式と証明】 (2)の問題が全くわからないです🥲 解説読んでも何が何だかという感じで困ってます

20-8015-138LNY さい。 「氏名欄に 5E1- YMJ5E1-Z1C2-01 2 問題 を実数の定数とする。 xの方程式 x+kx3+ (2k+3)x + kx + 1 = 0 について,次の問いに答えよ。 (1)x + 1/2 =t とおいて,①をもの方程式として表せ。 (2)の方程式 ① が実数解をもたないようなんの値の範囲を求めよ。 ① A4&AT 着眼点 4 次の相反方程式の実数解の個数をテーマにした問題で、 そのままでは処理が難しいところを, 置き換えによって2次方程式に帰着させ, 処理を可能にするのがポイントである。 (1)①は4次方程式であるから,+1/2 の形をつくり出すために,両辺を x2で割るとよい。 21tの2次方程式が得られたので、このtの2次方程式がどのような解をもてばよいかに注 目してみよう。 そのために, x+ =tの関係から、 「x が実数でない (虚数である)」 ための IC の条件を調べるわけだが,まずは「xが実数である」ようなtの条件を考えるとよい。 解答 (1) ①はx=0を解にもたないから, ①の両辺を x2 で割ると k x2 + kx + 2k + 3 + + 10 = 0 IC x² 両辺をx2で割る前に x2≠0 であることを示しておく。 (x+1/21) 2-2+k(1+1/2)+2k+3=0 よって, 求める方程式は t2 + kt + 2k +1= 0 ② 0 (2)関係式x+1=tにおいて,xが実数であるためには tが実数で あることが必要で x + 1 = t t⇔r-tx + 1 = 0 であるから ( ③の判別式)=t-4≧0 t≤-2, t≥2 ③ 0< よって, tの2次方程式②がt≧2の範囲に実数解をもたない条件 を考える。 (ア) ②が実数解をもたないとき ②の判別式 D は D=k2-4(2k+1)=k2-8k-4 -2 x が実数でない tの条件を求 めるために, まずはが実数 となるtの条件を考える。 なお, 「t が実数」 であるこ とは必要条件であるが十分条 件でないことに注意しよう (t が実数であってもが実数 とは限らない)。 < ①が実数解をもつ条件は ② が 2の範囲に実数解を もつことであるとわかったか ら逆に①が実数解をもたな い条件は,②が t≧2 の範 囲に実数解をもたないことで ある。 であるから,D<0を解いて 4-2√5 <k < 4 + 2√5 (イ) ②が実数解をもち,それらがすべて-2<t < 2 をみたすとき 7 口県

未解決 回答数: 1
1/7