数学
高校生

【高2数学・式と証明】
(2)の問題が全くわからないです🥲
解説読んでも何が何だかという感じで困ってます

20-8015-138LNY さい。 「氏名欄に 5E1- YMJ5E1-Z1C2-01 2 問題 を実数の定数とする。 xの方程式 x+kx3+ (2k+3)x + kx + 1 = 0 について,次の問いに答えよ。 (1)x + 1/2 =t とおいて,①をもの方程式として表せ。 (2)の方程式 ① が実数解をもたないようなんの値の範囲を求めよ。 ① A4&AT 着眼点 4 次の相反方程式の実数解の個数をテーマにした問題で、 そのままでは処理が難しいところを, 置き換えによって2次方程式に帰着させ, 処理を可能にするのがポイントである。 (1)①は4次方程式であるから,+1/2 の形をつくり出すために,両辺を x2で割るとよい。 21tの2次方程式が得られたので、このtの2次方程式がどのような解をもてばよいかに注 目してみよう。 そのために, x+ =tの関係から、 「x が実数でない (虚数である)」 ための IC の条件を調べるわけだが,まずは「xが実数である」ようなtの条件を考えるとよい。 解答 (1) ①はx=0を解にもたないから, ①の両辺を x2 で割ると k x2 + kx + 2k + 3 + + 10 = 0 IC x² 両辺をx2で割る前に x2≠0 であることを示しておく。 (x+1/21) 2-2+k(1+1/2)+2k+3=0 よって, 求める方程式は t2 + kt + 2k +1= 0 ② 0 (2)関係式x+1=tにおいて,xが実数であるためには tが実数で あることが必要で x + 1 = t t⇔r-tx + 1 = 0 であるから ( ③の判別式)=t-4≧0 t≤-2, t≥2 ③ 0< よって, tの2次方程式②がt≧2の範囲に実数解をもたない条件 を考える。 (ア) ②が実数解をもたないとき ②の判別式 D は D=k2-4(2k+1)=k2-8k-4 -2 x が実数でない tの条件を求 めるために, まずはが実数 となるtの条件を考える。 なお, 「t が実数」 であるこ とは必要条件であるが十分条 件でないことに注意しよう (t が実数であってもが実数 とは限らない)。 < ①が実数解をもつ条件は ② が 2の範囲に実数解を もつことであるとわかったか ら逆に①が実数解をもたな い条件は,②が t≧2 の範 囲に実数解をもたないことで ある。 であるから,D<0を解いて 4-2√5 <k < 4 + 2√5 (イ) ②が実数解をもち,それらがすべて-2<t < 2 をみたすとき 7 口県
f(t) = t2+kt + 2k + 1 とおき, 放物線 y = f(t) が t軸と-2<t <2の範囲のみ で共有点をもつ条件を考えると D=k2-8k-4≧0 軸:-2<< 2 2 f(-2)=50 f(2) = 4k+5 >0 であるから k≦4-2√5 または 4+2√5 -4 <k < 4 k>-5 <4-25 (ア)(イ)より, 求めるんの値の範囲は -< k < 4+2√5 4 答 yy=f(t) 5 2 0 2 t YMJ5E1-Z1C2-02 f(-2) > 0 はんの値によら ず成立する。
式と証明 高2数学 高2 数学 数学ii

回答

疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉