学年

教科

質問の種類

物理 高校生

物理基礎の正弦波の反射の問題です。 (2)の問題で、問題文の図では、O地点からマイナス方向に進んでいるのですが、答えではO地点からプラス方向に進んでいます。なぜ答えのようになるかわからないです💦

基本例題25 正弦波の反射 基本問題 198, 199 1 図の点0に波源があり, x軸の正の向きに 正弦波を送り出す。 端Aは自由端である。 波 源が振幅 0.20mで単振動を始めて 0.40s が 経過したとき, 正弦波の先端が点Pに達した。 0.20 (1) 波の速さはいくらか。 y[m〕↑ 0.20 PA 〔m〕 0 1.0 2.03.0 4.0 自由端 指針 (1) 波は 0.40s で1波長分 (2.0m) 進んでいる。「=」を用いる。 (2) 反射がおこらないとしたときの0.60s 後の 波形を描き, 自由端に対して線対称に折り返し たものが反射波となる。 観察される波形は, こ の反射波と入射波を合成したものである。 ■解説 (2) 図の状態から, 0.60s 後に観察される波形を図示せよ。 (2) 反射がおこらないとしたとき、波の先端は、 Pから 5.0×0.60=3.0m先まで達する。 した がって観察される波形は図のようになる。 y[m〕↑ 反射波 入射波 観察される波形 0.20 3.0 [m] 0 1.0% 2.0 ¥4.0 5.0 (1) 図から 0.40s 後に, 1波長の 波が生じている。 周期 T = 0.40s, 波長 -0.20 入 = 2.0mである。 波の速さを [m/s] として, A 2.0 = T 0.40 = 5.0m/s 90 章 波動

回答募集中 回答数: 0
数学 高校生

数II 微分 この問題の答えが私が解いた答えと合わないのですが、なぜ答えのようにならなくてはいけないのかわかりません。赤線引いたところが間違えたところです。 教えていただきたいです🙇‍♀️

356 重要 例題 224 区間に文字を含む3次関数の最大・最小 f(x)=x-6x2+ 9x とする。 区間 a≦x≦a+1 における f(x) の最大値 求めよ。 指針 この例題は, 区間の幅が1 (一定) で, 区間が動くタイプである。 00000 M() を 基本200 まず, y=f(x) のグラフをかく。次に, 区間 a≦x≦at1をx軸上で左側から移動し ながら, f(x) の最大値を考える。 場合分けをするときは,次のことに注意する。 A 区間で単調増加なら, 区間の右端で最大。 区間で単調減少なら, 区間の左端で最大。 両極値をとるxの値がともに区間に含まれることはないから © 区間内に極大となるxの値があるとき,極大となるxで最大。 >0 (8) 区間内に極小となるxの値があるとき, 区間の両端のうちf(x)の値が大きい方 で最大→区間の両端で値が等しくなる場合が境目となる。 すなわち f(x)=f(a+1) となるとαの大小により場合分け。 A 最大 ® (1)M 最大 最大 [2] a<1ma+ 0≦a <1のと f(x)はx=1 M(a)=1 次に, 2 <α <3 f(a)=f(a+1) a3-6a2+▪ 3a² ゆえに よって a= 2 <α <3と5< [3] 1≦a< f(x)はx= M(a)= 解答 最大 または 9+√33 [4] 6 f(x)はx= M(a) f'(x)=3x²-12x+9 =3(x-1)(x-3) f'(x) = 0 とすると x=1,3 f(x) の増減表は次のようになる。 x 1 f'(x) + 0 - 3 f(x) 解答の場合分けの位置のイ y=f(x)メージ 以上から 4--- y=f(x)| 4 NN [2] [3] [4] 0 + 極大| 極小 01 3 a01 a 3a+1 x 4 0 検討 よって, y=f(x)のグラフは右上の図のようになる。 ゆえに、f(x)のa≦x≦a+1における最大値 M (α) は,次 のようになる。 [1] a+1 <1 すなわち α <0の [1] y とき f(x)はx=α+1で最大となり 1指針のA [区間で単調増 加で,右端で最大]の場 最大 合。 M(a) =f(a+1) =(a+1)-6(a+1)^+9(a+1) =a³-3a²+4 1 1 a O 1 a+1 3 3次関数のク p.344 の参考 ラフは点対 はない。す るとき 対称ではな 練習 |上の解答の =1/2とし Q= なお、放物 f(x)=x³- ⑤224よ。

回答募集中 回答数: 0
数学 高校生

この青で囲んだ部分のやつまじでどこから来たのかわかりません。どなたか教えてください

を 223 方 ワイ 増場 [2] a<1≤a+1 001のとき よって はx=1で最大となり M(a)=f(1)=4 次に2<α<3のとき, f(x)=f(a+1)とすると a³6a²+9a-a³ すなわ 2<a<3と5<√33/6に注意して 1.3.0.4+1 4+2² 1713! [3] 1≦a < のとき f(x)はx=αで最大となり 3a²-9a+4=0 _ −(−9) ± √ (−9)²—4•3•4 2.3 a= 9+√33 6 M(a)=f(a)=a³-6a²+9a 近いもの lid 以上から まちがた 9+√33 [4] ≦αのとき 6 f(x)はx=a+1 で最大となり M(a)=f(a+1)=α-3a²+4 u+1使える! [2]y 4 Q= [3]y [4] y 9+√33 a<0, 6 0≦a <1のとき M (α)=4 4F a+α+1)=3から 2 最大 9+√33 1≦a < 6 [3],[4] a≧3≦atlになる 9 土 O 1 3 a+1 9+√33 6 3次関数のグラフの対称性に関する注意 p.344 の参考事項で述べたように, 3次関数のグ ラフは点対称な図形であるが, 線対称な図形で はない。 すなわち, 3次関数がx=pで極値をと るとき 3次関数のグラフは直線x=pに関して 対称ではないことに注意しよう。 上の解答のαの値を 133 6 最大1 2 3 '3 a a+1 a+1 I x ●最大 La+1 a+1 x のとき M (a)=a²-6a²+9a 指針の② [区間内に極大 となるxの値を含み, そ のxの値で最大] の場合 。 ≦a のとき M (a)=a²-3a²+4 指針の⑧ [区間で単調減 少で, 左端で最大] また は ⑩ [区間内に極小とな るxの値がある] のうち 区間の左端で最大の場合。 9+√33 ex= 指針の① [区間内に極小 となるxの値がある] の うち、 区間の右端で最大 の場合、 または指針のA [区間で単調増加で,右 [端で最大] の場合。 3次関数の グラフ f(+1) 設定しろ! 対称ではない 放物線 PICZ (線) 対称 i=212としてはダメ! ] なお、 放物線は軸に関して対称である。 このことと混同しないようにしておこう。 357 dfl 最小値m(t) を求め 6章 3 最大値・最小値、方程式・不等式 ぐの E 委

回答募集中 回答数: 0
数学 高校生

場合分けの問題で、なぜ片方だけ=が あるのですか?わかる方お願いします🤲

00000 重要 例 224 区間に文字を含む3次関数の最大・最小 f(x)=x-6x+9x とする。 区間 a≦x≦a+1におけるf(x)の最大値を 求めよ。 「指針 この例題は、区間の幅が1 (一定)で,区間が動くタイプである。 まず, y=f(x)のグラフをかく。次に,区間 a≦x≦a+1をx軸上で左側から移動し ながら, f(x) の最大値を考える。 場合分けをするときは,次のことに注意する。 A 区間で単調増加なら、 区間の右端で最大。 ® 区間で単調減少なら、 区間の左端で最大。 両極値をとるxの値がともに区間に含まれることはないから © 区間内に極大となるxの値があるとき, 極大となるxで最大。 ① 区間内に極小となるxの値があるとき, 区間の両端のうちf(x)の値が大きい方 で最大→区間の両端で値が等しくなる場合が境目となる。すなわち、 により場合分け。 f(a)/(a+1)となると① Max ① B A 最大 f'(x)=3x2-12x+9 =(x-1)(x-3) f'(x)=0 とすると k=1, 3 f(x) の増減表は次のようになる。 1 3 2- [拡大] 小 4. 0 f'(x) + f(x) > + 01 [1] [a+1 <1 すなわち α<0の [1] y とぎ 4F f(x)はx=g+1で最大となり M(a) =f(a+1) =(a+1)³-6(a+1)² +9(a+1) =a²³-3a²+4 よって, y=f(x)のグラフは右上の図のようになる。 ゆえに、f(x)のa≦x≦a+1 における最大値 M (α) は, 次 のようになる。 a M y=f(x) | 3 -最大 a+1 最大 3 または | 解答の場合分けの位置のイ メージ YA y=f(x) | 121131 a 01 Ca+1 a 3 a+11 <指針のA [区間で単調増 加で,右端で最大] の場 合。 [21] すなわち 0≦a <1のとき f(x)はx=1で最大となり M(a)=f(1)=4 次に, 2 <<3のとき, (a)=f(a+1) とすると a³-6a²+9a=a³-3a²+4 3a²-9a+4=0 ゆえに よって 検討 2-3 2<u <3と5<√33 <6に注意して 9+√33 のとき [3] 1≦a<- 6 f(x)はx=αで最大となり Q= M(a)=f(a)=a³-6a²+9a [4] 9+√33 αのとき 6 f(x)はx=a+1 で最大となり 以上から [2]y M(a)=f(a+1)=a³-3a²+4 -(-9) ± √(-9)²-4·3·4_9±√33 224 よ。 al 最大 [3]y+ 6 9+√33 6 [4]ya 最大 0 1. @ 3 a 05 1 9+√33 6 a<0, 0≦a <1のとき M (α) = 4 .9+√33 [1]≦a[k] [] 6 3 3次関数のグラフの対称性に関する注意 p.344 の参考事項で述べたように, 3次関数のグ ラフは点対称な図形であるが, 線対称な図形で はない。 すなわち, 3次関数がx=pで極値をと るとき, 3次関数のグラフは直線x=に関して 対称ではないことに注意しよう。 「上の解答のαの値を a+(a+1) 2 =3から a+1 a a+1 指針C [区間内に極大 となるxの値を含み、そ のxの値で最大] の場合、 最大 aa+1 a+1 ―≦a のとき M (a)=α²-3a²+4 指針の区間で単調減 で、左端で最大] また ① [区間内に極小とな るxの値がある] のうち 区間の左端で最大の場合。 のとき M(α)=α²-6a²+9a <指針の① [区間内に極小 となるxの値がある ] [の うち、区間の右端で最大 の場合。 または指針の [区間で単調増加で、 右 で最大] の場合。 357 3次関数の グラフ 「対称ではない 放物線 (線)対称 6 a=1 としてはダメ! ] 2 なお, 放物線は軸に関して対称である。 このことと混同しないようにしておこう。 f(x)=x-3x²-9x とする。 区間 t≦x≦t+2におけるf(x)の最小値m(t) を求め 2 最大値・最小値方程式・不等式

回答募集中 回答数: 0
数学 高校生

この軌跡の問題の代入するという考え方がいまいち分からないです。 st、xyの関係式を作って代入するところまではわかるのですが、、、 どうしてどれでstの方程式をxyの方程式に作り替えられるのか分からないです

00000 /p.174 基本事項 ■ 2 重要 113 114 基本例題 110 三角形 2点A(6,0), B(3,3)と円x2+y^2=9上を動く点Qを3つの頂点とする三角形 の重心Pの軌跡を求めよ。 指針 動点Qが円周上を動くにつれて, 重心Pが動く。 このようなものを連動形 (Q 以外の文字で表す。 動してPが動く)ということにする。 連動形の問題では,次の手順で考えるとよい。 ①1 軌跡上の動点P(x, y) に対し、 他の動点Qの座標は,x, 例えば, s, tを使い, Q(s,t) とする。 [②] Qに関する条件を s, tを用いて表す。 ③3 2点PQの関係から,s,tをx,yで表す。 ④ ② ③ の式からst を消去して,x,yの関係式を導く。 なお, 上で用いたs, tを本書ではつなぎの文字とよぶことにする。 CHART 連動形の軌跡 つなぎの文字を消去して、xの関係式を導く P(x,y), Q(s,t) とする。 解答 点Qは円x2+y2 = 9上を動く から s2+12=9 点Pは△ABQ の重心である から x= 6+3+s 3 y= ...... 0+3+t 3 (2) s=3x-9, t=3y-3 よって, 求める軌跡は (s, t) Q₁ ****** -3 3 ②から ①に代入して したがって ゆえに, 点Pは円 ③上にある。 逆に, 円 ③上の任意の点は,条件を満たす。 練習 放物線 y=x2. 10 線 ① 上を動くとき、次の点Q (3, 1) A 0p(x,y)/3 6 X -3 (3x-9)²+(3y-3)²=9 (x-3)^+(y-1)'=1 中心が点 (3,1), 半径が10円 (*) B(3, 3) 注意 上の例題の直線AB:x+y-6=0と円x²+y²=9は共有点 をもたないから、△ABQ を常に作ることができる。 しかし、直 線AB と円が共有点をもつときは,その共有点をRとすると, 図形 ABR は三角形ではなくなるから, そのときの点Pを軌跡 から除外しなければならない。 (3) 点Qの条件。 R の軌跡を求めよ。 点Pの条件。 P Q の関係から,s,t をx, yで表す。 なお, Aは UP {3(x-3)}^+{3(y-1)}^=9 この両辺を9で割って ③ を導く。 (*) 円(x-3)+(y-1)'=1 でもよい。 直線AB Ay 6 3 13 ・①とA(1,2), B(-1,-2), C (4,-1) がある。 点Pが放物 6 C

回答募集中 回答数: 0
数学 高校生

数Aの問題です。 (2)の解説で、 「C,D, P, Qは同一円周上の点なので、四角形 CPQD は等脚台形であるから、AP=AQより、三角形ADCはAC=AD の二等辺三角形である。」 とありますが、等脚台形だからAP=ADを導き出せる過程が分かりません。

設問 右の図のように,2点A,Bで交わる2円において,Aを 通る直線がその2円と交わるA以外の交点をそれぞれP, Q とする。 さらに, 2点P, Q における円の接線をそれぞれ引き, その2接線の交点をCとおく。 (1) 4点 B, C, P, Q は同一円周上にあることを証明せよ。 (2) AP = AQ のとき, AP'=AB AC であることを証明せよ。 解答 (1) APBAにおいて接弦定理より ∠CPA=∠ABP △QAB において接弦定理より ∠CQA=∠ABQ よって ∠PCQ + ∠PBQ =∠PCQ+ ∠ABP + ∠ABQ =∠PCQ+ ∠ CPA+ ∠CQA P =180° であり, 4点B, C, P, Q は同一円周上にある。 (2) 4点 B, C, P, Q を通る円と直線 AB の B 以外の交点をDとおくと, 円周角の定理より ∠DCQ=∠DBQ P P D (証明終) Q S (1)より, CQA=∠ABQ なので ∠DCQ=∠CQA よって, CD // PQ である。 これと,C, D, P, Q は同一円周上の点なので, 四角形 CPQD は等脚台形である。 ここで, AP = AQより, △ADC は AC = AD の二等辺三角形で 等脚台形は上底の中 点,下底の中点を結ぶ あるから 方べきの定理より AP AQ=ABAD 直線に対して線対称 である。 .. AP2 = AB・AC このことはCとDが一致する場合も成り立つ。 Q ( 証明終) Q 同一円周上にあるため の条件は向かい合う内 角の関係を考えるわけ だが,接線が絡んで いるので,接線と角の 関係が使える接弦定 理が有効。 錯角が等しい。

回答募集中 回答数: 0
1/5