学年

教科

質問の種類

数学 高校生

29番の(1)で必要十分条件を求める問題で、どちらが必要条件でどちらが十分条件か分からなくなってしまいました。考え方を教えて頂きたいです。

28 よって ここで ゆえに −(n=k+1}{n+k+1)+(n−k)(n+k) n→∞0 =-2k²+(2n²+2n+1) f(n)=-4 f(x)=x(2k² +2n² +2n+1) k²=0+22k², 1=2n+1 TA³5 k=1 −42 k²+(2n²+2n+1) (2n+1) k=1 − n(n+1)(2n+1)+(2n²+2n+1)(2n+1) lim 72-00 n³ (2) f(n) -1/(1+1/2)(2+1/2)+(2+1/2)(2+1)} =--²--1-2+2-2= 8 3 3 別解n≦x≦k, k≦x≦n と k<x<kに分けて,直線 y軸に平行な直線につ x=i (-n≦i≦n) 上にある格子点の数を求める。 さて格子点を数える。 = -n≦i≦k のとき, 格子点の数は k=-n 1+3++{2(n−k+1)−1}=(n−k+1)² = (+_____________ k<i<kのとき, 直線 x = i の本数は ←-k+1≦isk-1 各直線上の格子点の数は よって k-1-(−k+1)+1=2k-1 = I=gb S=b 2(n-k+1)-1=2n-2k+1 Nk=2(n-k+1)+(2n-2k+1)(2k-1) =-2k²+(2n²+2n+1) 総合を複素数とする。 自然数nに対し、2” の実部と虚部をそれぞれxとyとして、2つの数列 29 {Xn},{yn}を考える。 つまり, z=xn+iy" (iは虚数単位) を満たしている。 (1) 複素数zが正の実数と実数0を用いて z=r (cos0+isine) の形で与えられたとき、 数列{x},{ym} がともに0に収束するための必要十分条件を求めよ。 1+√3 10 = n(n+1)(2n+1) のとき、無限級数Σx とΣy はともに収束し, それぞれの和は n=1 71=1 x=2y=イロである。 (1) z=r (cos0+isin0) [r>0] のとき HINT (1) x²+y² = (r")2 となることに注目し, まず必要条件を求める。 (2) z を等比数列の和の公式を利用した式で表してみる。 ORAN z"=r" (cosnotisinn()=r"cosn0 +ir” sinne Xn=r" cosnd, yn=r"sinno よって ゆえに x2+yn²=(r")' (cos2nd+sin'nb)=(x2)" limxn=limyn=0のとき lim(x²+ym²)=0 〔類 慶応大] 本冊 例題 13,102 ←ド・モアブルの定理。 ←=xn+iy 0sr²<1 よって に0<r<1のとき 1-400 0<r<1より, lim|rl"=0であるから ゆえに 0≦|x|=||"|cos nolsrp. よって 0≦ly|=|||sinner| また 以上から、求める必要十分条件は +③iのとき 10 lim|x|=lim|y|= 0 71-00 ゆえに 1110 Z ここで1-2 lim xnn-000 ZR= ここで k=1 z(1-2)= 1-² よって 1- 1+√3 i 10 1+√3 i 10 k=1 84 3+5√3 i 42 (1+√3i)(9+√3 i) (9-√3i)(9+√3 i) 6+10√3i_3+5√3i 2x= k=1 1-2 (1-(xn+iyn)) 1+√3 i 9-√3i 11-0 0721 0<r<1 n=1] -(1-Xn-iyn) 2R= = 1/2 (3(1-xn) +5√3 yn+(5√/3 (1–xn)—3yn}i) z*= (xn+iyn)= xx+iZyn k=1 3(1-x₂)+5√√3 yn 42 ΣXn² n=1 42 5√3 (1-xn)-3yn 42 0</1/3 <1であるから, (1) の結果より limxn=limyn = 0 „=lim 11-00 2 k=1 2 = = = = ( 1²/2 + √²³_i) = = = (cos / 1 + isin) Σyn=lim- 11-0 ←Sa<1のとき a²19 a=1のとき、 α>1のとき、18 42 ←xel Saxolxel から、 xel 0のとき 初項z. 公比zの等比 数列の初項から第 環 までの和 12-00 3 (1-x)+5√3ym_3_71 42 5√3 (1-xn)-3yn_15√/3 42 -419 ←分母の実数化。 42 14 ← 22 のもう1つの表現。 ←実部、虚部をそれぞれ 比較。 (12) 結果を利用 総合 N=1 £ =lim ży

回答募集中 回答数: 0
数学 高校生

この問題が解説を読んでもうまく理解できません。どなたか解説お願いします…🙏🙏

1 **** 百合の数 先頭車両から順に1からnまでの番号のついたn両編成の列車がある。 ただし n≧2 とする。 各車両を赤色、青色,黄色のいずれか1色で塗ると き,隣り合った車両の少なくとも一方が赤色となるような色の塗り方は何 通りか. 0212 AF CO (京都大) 考え方 まずは具体例で考える. n=2のとき, (2両の塗り方) 2両目が赤のとき,1両目は赤、青、黄のいずれでもよい。 (1) 2両目が青, 黄のとき, 1両目は赤でなければならない。 一般には,n両目を考え,それが赤か, 赤以外かで場合分けして考える. 解答 条件を満たすn両の車両の塗り方の数を an, そのうち最後 尾の車両が赤である塗り方の数をbm, 最後尾の車両が赤以外 である塗り方の数を cm とする. a2=5, 62=3, C2=2 n=2 の場合, また, an=bn+cn ・・・・① ....... ここで,(n+1) 両目について考える. (n+1) 両目が赤のとき, n両目は赤, 青, 黄のいずれでも bn+1=bn+cn よいので, 一方,(n+1) 両目が青, 黄いずれかのとき, n両目は赤で なければならないので, Cn+1=26n ここで,b=1, G=2 とすると,②,③はn=1のときも 成り立つので、 n ≧1 として考える. ②③ bn+2=6n+1+26n [bn+2-2bn+1=-(bn+1-2bn) ・④ これより, | bn+2+bn+1=2(bn+1+bn) 5 2=2 ④より, 数列{bn+1-26} は初項 62-261=3-2=1, 公比1の等比数列だから, .... bn+1-26=1・(-1)^-1=(-1)^-1 ・⑥ ⑤より, 数列{bn+1+bn} は初項 62+b1=3+1=4, 公比2の等比数列だから, bn+1+bn=4.2n-1=2n+1 ⑥ ⑦ より, -3bn=(−1)n-1-2n+1, bn=(2²+¹+(−1)"} ③より,n≧2のとき, Cn=26n-1=2.1/23(2″+(-1)^-1=1/23(2"-2 (-1)"} 1 {2n+2-(-1)"} (通り) (n≧2) 3 よって,①より, - an= 最後尾の車両の色に 注目して考える. 1両目 2両目 赤 赤 赤62 青黄赤赤 C2 両目(n+1) 目 赤 }ón 赤 園 赤+1 Cn 赤}ón 青 赤}6 黄 x2=x+2 より *Cn+1 (x-2)(x+1)=0 x=2, -1 n≧2で考えると, b3-262 NLC =(3+2)-2・3=-1 ・⑦6+1-26な部分 |=-1(-1)-2 =(-1)-1 -(-1)"-¹=(-1)"

回答募集中 回答数: 0
1/73