学年

教科

質問の種類

数学 高校生

汚くて申し訳ないです💦 inf(写真下部)について質問です。 文章の理解はできたのですが、★部分をもう少し具体例で理解したいと思いました。例えばどんなものがあるのか教えていただけませんか?

トを問 4で外接する2円 0, 0' がある。 Aにおける共通接線上 点A の点Bを通る1本の直線が円0と2点C, Dで交わり, B 00000 明せよ。 を通る他の直線が円 0′ と 2点E, F で交わるとする。こ のとき, 4点C, D, E, F は1つの円周上にあることを証 OA OXF p.394,395 基本事項 3. 基本 82 403 CHART & SOLUTION 1つの円周上にあることの証明 方の定理の逆 4点が1 から、「べきの定理の逆」 を利用する方針で考える。 1つの円周上にあることは, 「円周角の定理の逆」, 「内角と対角の和が180°」, 「方べ の定理の逆」のいずれかを利用すれば示せるが,この問題では角度についての情報がな 4点C,D,E,F を通る円をかいてみると, 示すべきことが BC BD BE BF であること が見えてくる。 円0において,方べきの定理から B E ← 接線 BA, 割線 BD ←接線BA, 割線 BF BC・BD=BA2 円 0′において, 方べきの定理から 0 よって BE・BF=BA2 BC・BD=BE・BF ゆえに、方べきの定理の逆から、共 3 10 円と直線、2つの円 4点C,D,E,Fは1つの円周上にある。 に 内 inf 方べきの定理 PA・PB=PC・PD において PA・PB の値をべきという。ここで,円の半径をr とすると, [1] A 右図の [1] のとき PA・PB=PC・PD=(CO+OP)・(QD-QP) =(z+OP)(r-OP)=-QP2 [2] C D OP B B 右図の [2] のときは,同様の計算で PA・PB=OP2-r2 したがって, PA・PBの値は|OP2-2に等しい。OP2は, 点Pが固定されていれば一定の値である。すなわち 定点Pを通る直線が0と2点A,Bで交わるとき, PA・PBの値は常に一定である。 PRACTICE 90 金 円に、円外の点Pから接線 PA, PB を引き, 線分AB と PO の交点を通る円Oの弦 CD を引く。 このとき, 4点P,C, ODは1つの円周上にあることを証明せよ。 ただし, C,Dは P 足理 26 MI D B

回答募集中 回答数: 0
数学 高校生

89.2 2の解答の図での赤の直線と黒の直線はそれぞれ何を表しているのですか?

442 の 基本例題89 方べきの定理とその逆を利用した証明問題 ①①000 (1) 鋭角三角形ABC の各頂点から対辺に, それぞれ垂線 AD, BE, CF を引き それらの交点(垂心)をHとするとき, AH HD=BH・HE=CH ・HF が成り立 類 広島修道大 つことを証明せよ。 (2) 2点 Q R で交わる2円がある。 直線 QR 上の点Pを通る2円の弦をそれぞ れ AB, CD (または割線を PAB, PCD) とするとき, A, B, C, D1つ 周上にあることを証明せよ。 ただし, A, B, C, D は一直線上にないとする。 440 基本事項 ① ②2 重要90 指針(1) 直角2つで円くなる により, 4点B,C,E,F は1つの円周上にある。 ゆえに, 弦 BE と弦 CF で 方べきの定理 が利用できて BH ・HE=CH・HF 同様にして, AH・HD=BH・HE または AH・HD=CH・HF を示す。 (2) PA・PB=PC・PD ・・・・・・ (*) であることが示されれば, 方べきの定理の逆により、 題意は証明できる。 ! よって, (*)を導くために, 弦AB と弦 QR, 弦 CD と弦 QR で方べきの定理を使う。 ゆるめ 【CHART 接線と割線, 交わる2弦・2割線で方べきの定理 Senpo. 解答 (1) ∠BEC=∠BFC = 90° であるから, 4点B, C, E, F は1つの円周上に ある。 よって, 方べきの定理により BH ・HE = CH・HF (3) 1 TE 同様に, 4点A, B, D, E は 1つの AFB 円周上にあるから AH ・HD=BH ・HE ① ② から (2) 2円について AH ・HD=BH・HE=CH・HF 89 PA・PB=PQ・PR, PC・PD=PQ・PR PA・PB=PC・PD ゆえに よって, A, B, C, D は 1つの円周 上にある。 B A A F C E B C D PBS)5453 14-10-89-12 方べきの定理 直角2つで円くなる D 弦BEと弦CF に注目。 <∠ADB=∠AEB=90° 弦 AD と弦BE に注目。 方べきの定理の逆 (1) 円に内接する四角形 ABCD の対角線の交点EからAD に平行線を引き, 直 線BCとの交点をFとする。 このとき, F から四角形ABCD の外接円に引 た接線FGの長さは線分FFの長さに 7 ( に し

回答募集中 回答数: 0
数学 高校生

13行目の∠PCM=∠COMはなぜ分かるのですか、 教えてください🙏

る。C, Dにおけるこの円の接線の交点をPとするとき, 4点0, A, B, P 円Dにおけるこの円の接練の交点をPとするとき, 4点0, A, B, P は同一円周上にあることを証明せよ。 逆向きに考える 給「4点0, A, B, Pが同一円周上にある」ことを示すには, 次の(ア)~() の いずれかを示せばよい。 (7) 円周角の定理の逆 の共 対() 対角の和が180° (ウ)方べきの定理の逆 A P B B B 「角についての条件がない (ウ)方べきの定理の逆 を考えてみる。 本間では 【条件に交わる2つの弦 AB, CDがある Action》 4点が同一円周上にあることは, 方べきの定理の逆を用いよ 闇弦 CD の中点をMとする。 弦 AB と CD について,方べき の定理により Mは AB とCD の交点で ある。 MA·MB = MC·MD 300 MC = MD より MA·MB = MC 示したい式は VDE 0M MA·MB = MO·MP ここで,APCD において, PC = PD, MC = MD より PMI CD よって, OP は CD と M で交わ る。 のより、MC= MO·MP を示せばよい。 MP:MC = MC:MO と比の形で見ることで かベAPMCと△CMO の相似 を示そうと考える。 @Action 例題 272 「線分の長さの積は, 相似 比を利用せよ」 B D 0- 0 APMC と △CMO について, ZPMC = ZCMO = 90°, <PCM = ZCOM より 0. APMC の ACMO よって,PM:CM= CM:OM より CM° = OM· MP 2 PMC= L MC9+トMoc (外角) Pco= L PCM+ムMCO 4ム MCO - ムPCO-<PcM MA·MB %= MO·MP の, 2より は同一円周上にある。 kP MC= 2pce- <PCM +2MOQ 8章1円の性質機 田2考のフロセス」

回答募集中 回答数: 0
数学 高校生

13行目の∠PCM=∠COMはなぜ分かるのですか、 教えてください🙏

る。C, Dにおけるこの円の接線の交点をPとするとき,4点0, A, B, P 「円0の直径でない2つの弦 AB, CD について, 弦ABは弦 CD を2等分す は同一円周上にあることを証明せよ。 逆向きに考える 「A点0. A, B, Pが同一円周上にある」ことを示すには, 次の(ア)~()の いずれかを示せばよい。 (7) 円周角の定理の逆 (イ) 対角の和が180° (ウ) 方べきの定理の逆 A A 0 0 P B B B 「角についての条件がない [条件に交わる2つの弦 AB, CD がある (ウ)方べきの定理の逆 を考えてみる。 本間では Action》 4点が同一円周上にあることは, 方べきの定理の逆を用いよ 8 章 開弦 CD の中点をMとする。 弦AB と CD について,方べき の定理により Mは AB と CD の交点で ある。 21 MA·MB = MC· MD 300 A MC- MD d てVDE 示したい式は MA·MB = MC ここで,APCD において, PC= PD, MC = MD より MA·MB = MO·MP のより、MC= MO·MP を示せばよい。 MP:MC = MC:MO と比の形で見ることで かベAPMCとACMO の相似 B D PM I CD よって, OP は CD と M で交わ る。 0-a0|を示そうと考える。 APMC と △CMO について, ZPMC = ZCMO = 90°, <PCM = ZCOM より @Action 例題 272 「線分の長さの積は, 相似 比を利用せよ」 APMC △CMO よって,PM:CM= CM:OM より E CM°= OM· MP :0 ag….② 2PMC= L MCC9+ムMoc 一 Pco= pCM+ムMCO 4 MCo- APco-<Pcr (外角) 0, 2より AIMA· MB= MO·MP は同一円周上にある。 4P MC= LPCe- <PCM teMos 考のフロセス

回答募集中 回答数: 0
1/2