学年

教科

質問の種類

数学 高校生

(3) a n−1 − a n =2のn乗−3n+1が階差数列になるというイメージが湧きません。階差数列になる証明とか具体例を教えてくださいよ

基本 例題 寺差数列,等比数列, 階差数列と漸化式 次の条件によって定められる数列{a} の一般項を求めよ。 (1) a1= -3, an+1=an+4 ((3) a1= 1, an+1=an+2"-3n+1 指針 00000 463 (2) a1=4,2a+1 +34=0 [(3) 類 工学院大 ] P.462 基本事項 1 漸化式を変形して, 数列{an} がどのような数列かを考える。 (1) an+1=an+d (anの係数が1で,dはnに無関係) 公差dの 等差数列 (2) an+1=ran (定数項がなく,rnに無関係) →公比の等比数列 (3) an+1=an+f(n) (anの係数が1で, f (n) はnの式) →f(n)=b とすると,数列{bn} は {an} の階差数列であるから,公式 n-1 n≧2のときan=a+bk を利用して一般項 αを求める。 k=1 (1) an+1-an=4より,数列{an}は初項 α1=-3,公差4の 等差数列であるから an=-3+(n-1)・4=4n-7 解答 3 (2) an+1=- 2 -an より, 数列{an} は初項α1=4,公比 3 <a=a+(n-1)d 2 の等比数列であるから an=4 3\n1 章 漸化式数列 (3) an+1-an=2"-3n+1より, 数列{an} の階差数列の第n 項は2"-3n+1であるから, n≧2のとき an=arni 階差数列の一般項が すぐわかる。 (LC- n-1 an=a+(23k+1) k=1 =1+22-32k+21 k=1 k+2nd ton=1+ 2-1 2(21-1) -3.12 (n-1)n(n-1) k=1 HALUC 53055AP 3 5 =2"- n²+ n-2 ① 2 2 n=1のとき 21-3.1²+5.1- ・1-2=1 n-1 k=1 n-1 Σ2は初項2, 公比 k=1 2 項数n-1の等比 数列の和。 a =1であるから,①はn=1のときも成り立つ。 したがって 主意 3 5 n-2 + a=2"-n²+n-2 初項は特別扱い an+1=an+f(n) 型の漸化式において,f(n) が定数の場合, 数列 {a} は等差数列となる。 24(0)

解決済み 回答数: 1
数学 高校生

キ=n-2、ク=n-1になる理由が分かりません。 教えてください🙏

F22/5/5. 数学Ⅱ・数学B 第3問~第5問は,いずれか2問を選択し, 解答しなさい。 第4問 (選択問題) (配点 20) 花子さんは,毎年の初めに預金口座に一定額の入金をすることにした。この入金 を始める前における花子さんの預金は10万円である。ここで,預金とは預金口座 にあるお金の額のことである。 預金には年利1%で利息がつき, ある年の初めの 預金が万円であれば,その年の終わりには預金は1.01万円となる。 次の年の 初めには1.01万円に入金額を加えたものが預金となる。500 毎年の初めの入金額を万円と年目の初めの預金を4万円とおく。 ただ L. p>0 EL, n 3.0 v2z00 180.0 750,0 8230.000.0 20.0 40.0 zep 01580.000 TO 0 例えば, a1= 10+p, a2 = 1.01(10) + p) +pである。 10 10.0 00.0 001RIS.0 18.0 880.0 209.0165 02881.00a0jare.0 0 % 1.0 8.0 E.0 8.310 reel 01210 40 2.0 0 SES Dross.0 ass. .0 花子さんの預金の推移 Las 0 Dres D 0 Sa 0 0 0 2012 1年目の初め1 (1年目) 10+p 1年目の終わり 1.01 (10+ p) 0 6.0 a1 as 26.0200.00 万円入金 10.0 198008290 Suga 2年目の初め 81 00004.0 2年目の終わり (2年目) 1.01 (10+p)+p000 BEN 1.01 (1.01 (10+p) + p} a20 万円入金 STEA 3年目の初め (3年目) 3年目の終わり Be SS 参考図 (数学Ⅱ・数学B第4問は次ページに続く。 83 TS 83 S -44- (260644)

未解決 回答数: 1
数学 高校生

【統計的な推測】 (ケ)についてです。 これってなんで二項分布に従うのですか?解いてる時は感覚的に無効分布だと思ったのですが見直したらよく分からなくなりました。 正規分布に従うときと二項分布に従うときの違いってなんですか?

以下の問題を解答するにあたっては,必要に応じて27ページの正規分布表を用い を行った。 地域Kにおける高校生のスマートフォン(以下,スマホ)の利用状況について調査 数学C 第4問~第7問は,いずれか3問を選択し, 解答しなさい。 第5問 (選択問題(配点16) てもよい。 数学II, 数学 B 数学C 昨年度の地域 K の高校生全員を母集団とし, 400人を無作為に抽出する。この とき,1≦h<2である高校生の人数を表す確率変数をY2h<3である高校 生の人数を表す確率変数を Zとする。 Yは ケ に従う。 また, Yの標準偏 差はZの標準偏差の 6 コ 1 1.83 サシ 倍である。 夕 B(400, 0.2) √V(x)=400.0.2(1-02) 68 (1) スマホの所有台数について調査するため,地域Kの高校生を無作為に10人選 び, 次のアンケートを行った。 20 18 26 地域Kでは,予算の関係で今年度は全数調査ではなく, 標本調査を行うことに なった。 標本の大きさを1600として, 無作為に抽出した高校生を対象に調査を V80.0.8=64=8 行ったところ, スマホ利用時間の標本平均は4.7時間であり, 標本の標準偏差は 2.4時間であった。 アンケート 2.9 8 次の選択肢から、 自分のスマホの所有台数を選んでください。 60 今年度の高校生のスマホ利用時間の母平均をmとし, 母標準偏差は2.4 とす 54 る。 標本の大きさ1600 は十分に大きいので, 標本調査の結果による, m に対す 60 A : 0 台 B:1台 C2台 D : 3台以上 0.75 る信頼度 95%の信頼区間は ス である。 アンケートの結果は E(x)= 0x110 8160 m-4.7 2.4 2.4 +1× +2× ×1/6+3×10 56- 1000 0.06. 40 40 ケ A:1人 B:7人 C:2人 D:0 人 については,最も適当なものを,次の①~⑤のうちから一つ選べ。 =0.06 T To 10 であった。 この10人の集団において, 一人を無作為に抽出したとき, その高校生 のスマホの所有台数を表す確率変数を X とする。 Xの平均 (期待値) は 10 ⑩ 正規分布N (400,0.05) ① 二項分布B (400,0.05) 10 0.0 402.4 ②正規分布N (400,0.1) ③二項分布B (400,0.1) ア は オ カキである。 イであり,X2の平均は ウ エラである。 また, Xの分散 E(x)= ④ 正規分布 N (400, 0.2) ⑤二項分布B (400, 0.2) 8 + To 10 10/15 029 10 v(x) = 400.0.1 (10.1) =40×0.9=36 100=136=6. V(x)=(x)E()=1.5-1.21. (2)地域Kでは, 高校生のスマホの1日の利用時間 (以下, スマホ利用時間) を毎年 度調査している。 昨年度は,地域Kの高校生を対象に全数調査を行った。 ただ し, スマホを所有していない高校生は,スマホ利用時間を0時間とした。 以下の 表は,スマホ利用時間をん (時間)としたときの全数調査の結果である。 ス については,最も適当なものを,次の①~⑤のうちから一つ選べ。 ⑩ 4.02mm 4.92 ② 4.47 ≦m≦4.95 ④ 4.58≦m≦4.82 ① 4.44≦m≦4.90 ③ 4.55≦m≦4.85 ⑤ 4.62mm ≦ 4.88 121 h 0≦x<1 1≤h≤2 2≤h<3 割合 75% 10%】 3≦h < 4 4≤h 20% 1.4 12. 25% 40% To 1.21 100 ただし、数値はすべて正確な値であり,四捨五入されていないものとする。 0.29 h. np (数学II, 数学B, 数学C第5問は次ページに続く。) B(400,0.1) (数学II, 数学B, 数学C第5問は次ページに続く。) -1.96€ m-4.7 0.06 € 1.96 -0.1176m-4.70.1176 0 -22- 30+65 -23-45824 0.11 4.7 m64,8156 95

解決済み 回答数: 1
数学 高校生

【確率統計】 (シ)(ス)が分からないです。XiはわかるのですがXが何を示しているのかがわからないです。

選択問題) (配点 16) いずれか3問を選択し, 解答しなさい。 以下の問題を解答するにあたっては,必要に応じて19ページの正規分布表を用 いてもよい。 太郎さんと花子さんには, 共通で好きなお菓子がある。 そのお菓子は1個ずつ包 装された5個が1つの箱に入って売られている。 そのお菓子にはある割合で特別な 味付けのものが混じっている。 特別な味付けのお菓子は無作為に箱に入れられ, 1 つの箱に1個もないこともあれば2個以上のときもある。特別な味付けのお菓子の 割合は1/3の割合といわれているが,2人は常々もっと少ない割合ではないかと感 じていた。そこで2人は,友達や家族の力も借りて特別な味付けのお菓子の個数の 情報を集め, 検討してみることにした。 2人は調査を始める前に,有意水準と棄却域について自分たちなりの考えをまと めておくことにした。 数学Ⅱ・数学B 数学 C 2人は,どの包装についても確率で特別な味付けのお菓子が,確率 1-Dで普 通のお菓子が入っているように 0 <<1である定数を定められると仮定して, =1であることを帰無仮説, カキ 1/3であることを対立仮説として有意水準5%の 両側検定で判定することにした。 2人は情報を集めた 80 箱分400 個のお菓子における特別な味付けのお菓子の個 数が70個であることを確かめた。 どの包装についても確率 1/3で特別な味付けのお 5 菓子が入っており,確率で普通のお菓子が入っていると仮定する。 包装1個ご とに1以上400以下の整数を1つずつ割り振り, 数えごとに確率変数 X を, 数 iが割り振られた包装1個が特別な味付けのお菓子だったら値 1, 普通のお菓子だ ったら値0をとる確率変数として定める。 さらに X=X1+X2+... + X 400 により確 率変数Xを定める。 X, X の期待値 E (Xi), E (X)についてE(X)= 80 コ サ (i=1, 2,…,400) であり E(X)=シス である。 また, Xi, X の分散 V (X), 96 太郎 模擬試験などで使われる偏差値は50+ 計算されるそうだよ。 花子: 正規分布表から標準正規分布における有意水準 5% の両側検定におけ る棄却域は- ア イウ 以下または ア イウ 以上だから, 一般の正規分布における有意水準 5% の両側検定における棄却域は, 偏差値で表現すればエオ カ以下または キク 以上と (個人の得点)-(平均点)×10で (標準偏差) セ V(X)について V(X)= 040円 (i=1, 2, ..., 400) であり V(X)=チッで ソタ ある。 400 を十分に大きい数とみてXの確率分布は期待値シス標準偏差 テ の正規分布で近似できる。 よって実際に特別な味付けのお菓子が400個中 70 個だ ったことから有意水準 5% の両側検定により ト 5 。 なるね。 30 4 69 6 太郎: 模擬試験について調べるときに受験者から無作為に1人選ぶとして, そ れなりに選ばれそうな範囲だね。 ト の解答群 400.3 花子 : 私たちはあまり強い表現は用いないことにして, 数値が棄却域に属する ときは 「仮定を疑わせる結果となった」, 棄却域に属さないときは 「仮 定を疑わせる結果とはならなかった」と述べることにしよう。 ⑩仮定を疑わせる結果となった ① 仮定を疑わせる結果とはならなかった 0.475 (数学Ⅱ・数学B 数学C第5間は次ページに続く。) 20.95 (数学Ⅱ・数学B 数学C第5間は次ページに続く。) 400 1,46×10+50 =-19,6+50 69.6 -16- <-17-

解決済み 回答数: 1
数学 高校生

解説お願いします。 数学的帰納法の問題です。 写真の紫マーカーのところで、nにk+1を代入するはずなのにnにkを代入しているようにみえます。 私はどこの部分で間違えた考えをしているのか教えていただきたいです。 よろしくお願いします。

[頻出 例題 324 数学的帰納法 〔5〕… 漸化式から一般項を推定して証明 ★★★☆ a1 = -1, an+1 =an2+2nam-2 (n = 1, 2, 3, ...) で定められた数列 {a}について (1) 2, 3, a をそれぞれ求めよ。 (2){a}の一般項を推定し, その推定が正しいことを,数学的帰納法を用 いて証明せよ。 思考プロセス 規則性を見つける a1=-1 ②より a2= ⑦より - an = f(n) と推定 a4= ⑦ より ⑦ より ⇒ 推定が正しいことを数学的帰納法で示す。 [1] n=1のとき正しいことを示す。 [2] n=kのとき正しいと仮定して, ...=f(k+1) を示す。 koken=k+1のとき より 4k+1=... noibA Action» 複雑な漸化式で表された数列の一般項は,推定し数学的帰納法で示せ 解 (1) 与えられた漸化式に, n = 1, 2, 3 を順に代入すると a2= a +2・1・α1-2=(-1)+2・(-1)-2=-3 as = az2+2・2・az-2= (-3)2+4・(-3)-2=-5 a = a32+2・3・α3-2=(-5)2+6・(-5)-2=-7 (2)よりan = -2n+1 … ① と推定できる。 hes I [1] n=1のとき a1 = -2・1+1= -1 よって, ① は n=1のとき成り立つ。 [2]n=kのとき, ①が成り立つと仮定すると ak = -2k+1 n=k+1 のとき,与えられた漸化式よりは -Vaas ak+1=ak2+2kak-2 =(-2k+1)2+2k(−2k+1)-2 = -2k-1 = −2(k+1)+1 よって,①はn=k+1のときも成り立つ。 [1], [2] より,すべての自然数nに対して, a = -2n+1 が成り立つ。 {a} は, 初項-1, 公差 -2の等差数列であると 推定される。よって, そ の一般項 α は an=-1+(n-1) (2) = -2n+1 と推定できる。 漸化式に仮定の式を代入 する。 ①の右辺に n=k+1を 代入した形になっている ことを明示する。

解決済み 回答数: 1
1/484