学年

教科

質問の種類

数学 高校生

(1)(2)ともにまったく分からないので教えてください!

[大] 大] 重要 例題 9 二項定理の利用 (1) 101 ' の下位5桁を求めよ。 (2)2 00で割った余りを求めよ。 CHART & THINKING のののの 23 基本 (1),(2) ともに, まともに計算するのは大変。 (1) は,次のように変形して、 二項定理を利用する。 1011= (100+1)100= (1+102) 100 展開した後, 各項に含まれる 10 に着目し, 下位5桁に関係する箇所のみを考える。 (2)も二項定理を利用するが,どのようにすればよいだろうか? →900=302 であることに着目し,2930-1 と変形して考えよう。 解答 (1) 1011=(100+1)100= (1+102) 100 =1+100C1・102+100C2・10+100C3・10°+100C4・10°++10200 =1+100C1・102+100C2・10+10%(100Cs+100C4 ・ 102 +... +10194) ここで, a=100C3 +100C4・102 +…+10194 とおくとaは自然数で 101100 = 1+10000 + 49500000 +10°α =10001+49500000 +10°a =10001+105(495+10a) 10 (495+10a) の下位5桁はすべて 0 である。 よって, 101100 の下位 5桁は 10001 (2) 2945(30-1)45=(-1+30)45 =(-1)^5+45Ci (−1)44・30+45C2(-1)43・302+45C3(-1)42・303 ■■ 1章 1 3次式の展開と因数分解,二項定理 分散式は、 +…+45C44(-1)・304+3045 第3項以降の項はすべて 302=900で割り切れる。 また,(-1)45=-1, -1) =1であるから -1+45・1・30=1349=900・1 +449 よって, 2945 を900で割った余りは 449 大←第1項と第2項の和は 900 より大きい。 計算への応用 INFORMATION 上と同じ考え方で, 複雑な計算を暗算で行うことができる。 例えば,9992 は 9992=(1000-1)=1000000-2000+1=998001, 4989×5011 は 4989×5011=(5000-11)×(5000+11)=50002-11=25000000121=24999879 と計算 できる。

回答募集中 回答数: 0
数学 高校生

49500000って下位5桁が0なので考えないんじゃないですか? 1-10000=-9999じゃダメなのは何故ですか?

重要例題6 19 n桁の数の決定と二項定理 1) 次の数の下位5桁を求めよ。 (ア) 101100 (イ) 99100 2951を 900 で割ったときの余りを求めよ。 【類お茶の水大) 基本1) 1章 ) これらをまともに計算することは手計算ではほとんど不可能であり,また, それを要 求されてもいない。そこで、次のように二項定理を利用 すると, 必要とされる下位5 桁を求めることができる。 (ア) 10100=(1+100)00=(1+10°) 100 1 これを二項定理により展開し,各項に含まれる 10"(n は自然数)に着目 して、下位5桁に関係のある範囲を調べる。 (イ) 99100=(-1+100)'00=(1+10°)100 として, (1) と同様に考える。 (2)(割られる数)= (割る数)×(商)+(余り)であるから, 2951 を 900 で割ったときの 商をM, 余りをrとすると, 等式 2951=900M+r(M は整数,0ハr<900) が成り立つ。 29=(30-1)であるから, 二項定理を利用して, (30-1)51 を 900M+r の形に変形 すればよい。 109 解答 )(ア) 101100-(1+100)100=(1+10°) 0 そリ+ 100C」×10°+ 100C2×10*+10°×N =1+10000+495×105+10°×N (N は自然数) 4展開式の第4項以下をまと めて表した。 10"×N(N, n は自然数, n25)の項は下位5桁の計 算では影響がない。 この計算結果の下位5桁は, 第3項,第4項を除いても変 わらない。 よって,下位5桁は イ) 99:00-(-1+100)100=(-1+10) 10 =1-100C」×10°+100C2×10*+10°×M =1-10000+49500000+10°×M =49490001+10°×M(M は自然数) この計算結果の下位5桁は,第2項を除いても変わらない。 よって,下位5桁は 2951=(30-1) =3051-sC,×3050+ =30°(3049-5C,×3048+ =900(3049-51C」×3048+… 5.C9) +1529 =900(309-5C.×3048+… s.Co+1)+629 こで、309-siC」×3048+ s.C49+1 は整数であるから, 5を900 で割った余りは 629 である。 10001 4展開式の第4項以下をまと めた。なお,9900 は 100 桁 を超える非常に大きい自然 数である。 で0ト含まれるきは 900 90001 1900=30) …………一5C49× 30°+sCso× 30-1 - 5IC49)+51×30-1 4(-1)"は rが奇数のとき-1 rが偶数のとき 41529=900+629 S0 (05 5 (南山 ]である。 を求めよ。 1 10115の百万の位の数は 【類中央 3次式の展開と因数分解、二項定理

回答募集中 回答数: 0
数学 高校生

2枚目の変形の仕方がよくわかりません。

基本 例題2 二項展開式とその係数 (a-26)°の展開式で, α'bの項の係数はア口, α'bの項の係数は 13 OOOOの また、(x*ーニ)の展開式で, xの項の係数は 、定数項は 口である。 2 x である。 【京都産大) 指針> 展開式の全体を書き出す必要はない。求めたい項だけを取り出して考たる。 よい。 1章 基本1) (a+b)"の展開式の一般項は 般項を書き, 指数部分に注目してrの値を求める。 まず, C,a"-"b (ウ),(エ) 一般項は C-(x^)^(-2)-.C-x2-r.-2) ここで,指数法則 α"+a"=a"-n を利用すると x12-2r =CA-2)". x" x" x12-2r したがって, 指数 12-3rに関し, 問題の条件に合わせた方程式を作り、 それをく =x'2-2r-r=x12-3r x" 解答 (a-26)°の展開式の一般項は abの項はr=1のときで, その係数は 6C.(-2)=7-12 a°b* の項は r=4のときで, その係数は AC=6 6CA(-2)*='240 AC=C2=15, (-2)*3D16 また,(x°--)の展開式の一般項は x C,(x) ょ 2C(-2)-- x12-2r x" へ (*)の形のままで考えると (ウ) xの項は SA の.C.(-2)"…x1?-2r-r x12-2r =x6 x" =C,(-2)"x12-3r 0 の ゆえに x2-2r=x°x よって 12-2r=6+ 項は x°の項は,12-3r=6より r=2のときである。 Ca(-2)="60 のこは これを解いて r=2 () 定数項は その係数は,Oから 定数項は,12-3r=0より r=4のときである。 C.(-2)=240 x12-2r=x"とすると したがって,①から SO 12-2r=r これを解いて r= アー1の スー よって s0n 次の式の展開式における, [ ]内に指定されたものを求めよ。 「x*の係数] [x*, x°の係数] (2) (x-1)? 練習 1「定数項) o)7 3次式の展開と因数分解

回答募集中 回答数: 0
数学 高校生

この問題の2番 このやり方じゃないと出来ないのでこのやり方で 途中式教えていただける方いませんか🙇🏼‍♀️ お願いします。

基本例題 4 展開式の係数 (1) 仁定理の利用) 次の式の展開式における, [ ]内に指定されたものを求めよ。 (1)(2x°+3)6 [x° の項の係数] (2) (x+2)[xの項の係数] x 1章 か.8 基本事項 4 1 HART OLUTION 二項定理 (a+b)"の展開式の一般項はC,a"-"b" 指定された項だけを取り出して考える。 (1) 展開式の一般項は C,(2x°)6-r.3"=,C,-2°-r.3"x'2-2r x2-2r=x となるrを求める。 (2) 展開式の一般項は .Crx*(2)=.C-2"x".- -4-ア x =x° となるrを求める。…… 解答 (1)(2x2+3)° の展開式の一般項は 6C; (2x)r.3"=。C,·2°-r.3"x!2-2r円 x°の項はr=3 のときであるから,その係数は 6C。-2°-3°=20×8×27=4320 *px°の形に変形 *12-2r=6 から r=3 2 4 (2)(x+-)の展開式の一般項は やb.960から x" x 1 -4-r. AC,x ) =.C,2"x*-r. x x" =x*-2r 1 の x*-=x* から x-"=x'x" これから4-2r=2 とし てもよい。 *4-r=2+r から r=1 よって r=1 ゆえに, x°の項の係数は 4C-2'=4×2=8 INFORMATION (a+b)" の展開式は(a+b)(a+b)(a+b)…(a+b) の①~①から,それぞれa, b 3 のどちらかを取り,それらを掛け合わせたものの和である。よって, a"-"b" の項の係 数はn個の(a+6) から6を取り出すr個を選ぶ場合の数,すなわち» Cr である。 「」を取り出す個数に注目してもC,=»Cn-r から同じ結果になる。 n 3次式の展開と因数分解,二項定理

回答募集中 回答数: 0
1/2