数学
高校生

この問題の2番
このやり方じゃないと出来ないのでこのやり方で
途中式教えていただける方いませんか🙇🏼‍♀️
お願いします。

基本例題 4 展開式の係数 (1) 仁定理の利用) 次の式の展開式における, [ ]内に指定されたものを求めよ。 (1)(2x°+3)6 [x° の項の係数] (2) (x+2)[xの項の係数] x 1章 か.8 基本事項 4 1 HART OLUTION 二項定理 (a+b)"の展開式の一般項はC,a"-"b" 指定された項だけを取り出して考える。 (1) 展開式の一般項は C,(2x°)6-r.3"=,C,-2°-r.3"x'2-2r x2-2r=x となるrを求める。 (2) 展開式の一般項は .Crx*(2)=.C-2"x".- -4-ア x =x° となるrを求める。…… 解答 (1)(2x2+3)° の展開式の一般項は 6C; (2x)r.3"=。C,·2°-r.3"x!2-2r円 x°の項はr=3 のときであるから,その係数は 6C。-2°-3°=20×8×27=4320 *px°の形に変形 *12-2r=6 から r=3 2 4 (2)(x+-)の展開式の一般項は やb.960から x" x 1 -4-r. AC,x ) =.C,2"x*-r. x x" =x*-2r 1 の x*-=x* から x-"=x'x" これから4-2r=2 とし てもよい。 *4-r=2+r から r=1 よって r=1 ゆえに, x°の項の係数は 4C-2'=4×2=8 INFORMATION (a+b)" の展開式は(a+b)(a+b)(a+b)…(a+b) の①~①から,それぞれa, b 3 のどちらかを取り,それらを掛け合わせたものの和である。よって, a"-"b" の項の係 数はn個の(a+6) から6を取り出すr個を選ぶ場合の数,すなわち» Cr である。 「」を取り出す個数に注目してもC,=»Cn-r から同じ結果になる。 n 3次式の展開と因数分解,二項定理
ー1ト

回答

まだ回答がありません。

疑問は解決しましたか?