学年

教科

質問の種類

数学 高校生

なぜPF:PF'=FQ:F'Qだと、点Pにおける接戦が角FPF'の外角を2等分するということが分かるのですか? 回答よろしくお願いします。

練習 Step Up 末広 C2-136 (414) 第6章 式と曲線 D 15 (i) k> のとき =(a²-√a²-b²x): (a²+√ a²-b²+x1) 第6章 式と曲線 Check! 練習 (415) C2-137 Step Up 米問題 ①と②の共有点はない。 よって、(i)(面)より。 共有点の個数は, √15 k<- のとき, 2個 2 15 k=-- のとき. 1個 2 15 k>-- のとき, 個 2 C2.65 =1 (1) (460)焦点をF.F' とする.楕円上の点P (x,y)におけ する。 ある接線は FPF' の外角を2等分することを証明せよ. ただし, 0<x<a, yi>0 と xx yy 楕円上の点P(x1,y) における接線の方程式は, ......① a² b² =1 y=0 とおくと, x0より。 a² x= x₁ つまり、接線とx軸との交点をQ とすると,0 (2) 双曲線 61 (a>060) の焦点をF,F' とする. 双曲線上の点P (x1,y) における接線はFPF' を2等分することを証明せよ。ただし、とす る. (1) 焦点をF(60) F' (630) とする. 点(x,y)は楕円上の点より、 a²b つまり、 よって. PF'= (va'-b-x)'+yi =(√a²-b²-x1)²+ b²x² a 351-1 0<x<aよりacoであるから, となり, a² FQ: x1 √a²-b². F'Q=a+√a²-b² FQ: F'Q=(a√a²-6 x X1 =(a²-√a²-6x₁); (a²+√√a²-b³·x1) ② ① ② より PF:PF'=FQF'Q が成立する. したがって, 0<x<ay>0 のとき 楕円上の点 P(x1,y) における接線は, <FPF' の外角を2等分する (2)焦点をF(v'+b20) F^(-√'+120) とする. 点P(x1, y) は双曲線上の点より. つまり. よって, (5) +24 人 b2 PF'=(va'+62-x+y^ =(va'+b^-x^2+ b = 10-2+bx+a^ b2\x x²-2√3+62x1+α -07101 A2017 160 6 a √√√a-b PF= a ここで, 0<x<a で あり 34 ary <1 P(x, y) a Ka>b>0より. √a²-b 幻 <a で a あるから, √a-62 PF=α- F(VG-6,0) a F(√a-b²,0) また, PF +PF'=2a であるから, PF'=2a-PF=a+ √a²-b² -x1 a よって, a PF: PF'-(6-10-82.): (a + √4-82.) √a²-b² a D PF= a √√a+b x-a a √√a²+b² a x-a ここで,x>a>0で a a あり、 √√a²+b² ->1であ a P(x, y) るから, PF=YQ'+6? F^(-vo +6.0) QF(vo+6.0) a また,x>a より PF'-PF=2a であるか ら PF'=PF +2a= よって a+b -x+a a 80 <a>0b>0より a a 6 B1 B2 [C C2

解決済み 回答数: 1
数学 高校生

数A 三角形の性質 三角形の比、五心 この問題の赤く囲った部分と、波線を引いた部分がなんでそう書けるのかわかりません。教えてくださると嬉しいです!

460 基本 79 三角円,心 00000 次のこと △ABCの∠B,Cの外角の二等分線の交点をIとする。 このとき、 を証明せよ。 (1) Iを中心として,辺BC および辺 AB, AC の延長に接する円が存在する。 (2) ZAの二等分線は,点Ⅰ を通る。 指針 (1)点Pが∠AOBの二等分線上にある (類広島修道大 I から, 辺 BC および辺 AB AC の延長にそれぞれ垂線 IP, IQ IR を下ろし、これ ⇔点Pが∠AOB の2辺 OA, OB から等距離にあることを利用する。 らの線分の長さが等しくなることを示す。 (2) 言い換えると 「∠B, ∠Cの外角の二等分線と ∠Aの二等分線は1点で交わる ということである。 よって、 点Iが∠QARの2辺 AQ AR から等距離にあることをいえばよい。 なお, (1) 円を △ABC の 傍接円 といい, 点Ⅰを頂角 A内の傍心という。 Iから,辺BC および辺 AB, AC の延長にそれぞれ垂線 解答 IP IQ IR を下ろす。 (1) IB は ∠PBQ の二等分線であるから ICは∠PCRの二等分線であるから よって IP=IQ=IR なぜこう 1P=IQ> IP=IR 3 B Q HA 基本 △ABCに 3AB+A 指針 解答 また, IP⊥BC, IQ LAB, IRICA であるから, I を中 心として,辺BC および辺 AB, AC の延長に接する円 が存在する。 (2)(1) より, IQ=IR であるから, 点Iは∠QARの2辺 AQ, AR から等距離にある。 ゆえに,点Iは QAR の二等分線上にある。 したがって, ∠Aの二等分線は, 点を通る。 冒榭 傍心・傍接円 [定理] 三角形の1つの頂点における内角の二等分線と、他の2つ 検討 の頂点における外角の二等分線は1点で交わる。 この点を1つの頂角内の) 傍心という。 また、 三角形の傍心を中 心として1辺と他の2辺の延長に接する円が存在する。 この円を, その三角形の傍接円という。 1つの三角形において, 傍心と傍接円は3つずつある。 なお,これまでに学習してきた三角形における外心, 内心、重心、垂 心と傍心を合わせて,三角形の五心という。 B

解決済み 回答数: 1
数学 高校生

角ATC=角TSP=角TBSがイコールになる理由を詳しく教えていただきたいです。 接弦定理がよくわかりません。 よろしくお願いします。

日本 例題 図のように、大きい円に小さい円が点Tで接してい まるで小さい円に接する橋線と大きい円との交 点をA,Bとするとき, ∠ATS と ∠BTSが等しい ことを証明せよ。 00000 [神戸女学院大 ] A S /B 399 CHART & THINKING 接線と弦には 接弦定理 p.394 基本事項 2 点Tにおける2つの円の接線と, 補助線 SP (Pは線分AT と小さい円との交点)を引き, 接 弦定理を利用する。 接弦定理を用いて, 結論にある ∠ATS や ∠BTS と等しい角にどんど ん印をつけていき,三角形の角の和の性質に関連付けて証明することを目指そう。 答 点における接線を引き、 図のよう に点Cを定める。 3章 10 円と直線、2つの円 また、線分 AT と小さい円との交点 をPとし,点Sと点Pを結ぶ。 接点Tに対して, 接線 TCは小さい 円, 大きい円の共通接線であるから S B 2円が接する→2円 の共通接線が引ける。 ∠ATC= ∠TSP=∠TBS ① ◆接弦定理 接点Sに対して,接線 AB は小さい円の接線であるから 接弦定理 ∠ASP = ∠ATS ② ATSB において <BTS + <TBS = ∠AST ∠AST = ∠ASP + ∠TSP ここで m _∠BTS + ∠ TBS = ∠ASP + ∠ TSP ③ ①③から ゆえに、②から m <BTS = ∠ASP <BTS = ∠ATS ■(三角形の外角)=(他の 2つの内角の和)

未解決 回答数: 0
数学 高校生

角ATC=角TSP=角TBSがイコールになる理由を詳しく教えていただきたいです。 接弦定理がよくわかりません。 よろしくお願いします。

日本 例題 図のように、大きい円に小さい円が点Tで接してい まるで小さい円に接する橋線と大きい円との交 点をA,Bとするとき, ∠ATS と ∠BTSが等しい ことを証明せよ。 00000 [神戸女学院大 ] A S /B 399 CHART & THINKING 接線と弦には 接弦定理 p.394 基本事項 2 点Tにおける2つの円の接線と, 補助線 SP (Pは線分AT と小さい円との交点)を引き, 接 弦定理を利用する。 接弦定理を用いて, 結論にある ∠ATS や ∠BTS と等しい角にどんど ん印をつけていき,三角形の角の和の性質に関連付けて証明することを目指そう。 答 点における接線を引き、 図のよう に点Cを定める。 3章 10 円と直線、2つの円 また、線分 AT と小さい円との交点 をPとし,点Sと点Pを結ぶ。 接点Tに対して, 接線 TCは小さい 円, 大きい円の共通接線であるから S B 2円が接する→2円 の共通接線が引ける。 ∠ATC= ∠TSP=∠TBS ① ◆接弦定理 接点Sに対して,接線 AB は小さい円の接線であるから 接弦定理 ∠ASP = ∠ATS ② ATSB において <BTS + <TBS = ∠AST ∠AST = ∠ASP + ∠TSP ここで m _∠BTS + ∠ TBS = ∠ASP + ∠ TSP ③ ①③から ゆえに、②から m <BTS = ∠ASP <BTS = ∠ATS ■(三角形の外角)=(他の 2つの内角の和)

回答募集中 回答数: 0
数学 高校生

数Aの問題です (2)の5行目 ∠AHP=90°-∠BAH=∠ABH…② の所、 なぜ∠AHPは90°から∠BAHを引くのか分かりません! 教えてください🙇‍♀️

鋭角三角形ABCがある。頂点Aから辺BCに下ろした垂線の足をHと さらにHから辺AB, ACに下ろした垂線の足をそれぞれP, Qとす る. (1)A,P,H,Q は同一円周上にあることを示せ 15 22 P, B, C, Q は同一円周上にあることを示せ. 精講 この問題では,「内接四角形の定理の逆」 を使ってみましょう. あ る四角形の「対角の和が180°」であれば,その四角形は円に内接 することがわかります. 練習問題4(2)で見たように, 「対角の和が180°」であ ることは「ある内角がその“対角の外角” と等しい」ことと同じであることも 頭に入れておくといいでしょう. 解答 (1) ∠APH + ∠AQH=90°+90°=180° であるから、 内接四角形の定理の逆より 四角形APHQ P に内接する.つまり,A, P,H,Qは同一円周上 にある. 11 (2) A, P. H, Q は同一円周上にあるので, 円周角 B H A の定理より, EZAQP=ZAHP...... ∠AQP ∠AHP また,∠AHB=90° ∠APH=90°より, ∠AHP=90°-∠BAH = ∠ABH ...... ② TOP ①,② より ∠AQP=∠PBC. 四角形 PBCQ B H は、1つの頂点の内角がその 「対角の外角」と等しいので、 内接四角形の 理の逆より、四角形 PBCQは円に内接する. したがって, P, B, C.Q 同一円周上にある. コメント 1 (2)は, 連想をつなぐことがかなり難しい問題です. こういう問題では,「 う方向で考えていくとい

解決済み 回答数: 1
1/72