学年

教科

質問の種類

数学 高校生

点と点を結んでいる線はなんでしょうか? 書く必要がある線ですか?

素数平面 素数平面 in a=a+bi を座標平面上の点(α, b) で表したと この平面を複素数平面 または複素平面という。 複素数の実数倍 α=0 のとき 3点 0, α, β が一直線上にある 2 共役な複素数 1. 対称 3. 複素数の加法, 減法 点の平行移動や平行四辺形の頂点として表される。 ⇔ β=ka となる実数kがある 点α と実軸に関して対称な点は 点αと原点に関して対称な点は 点αと虚軸に関して対称な点は 2. 実数 純虚数 5.08 3. 和・差・積・商 a+β=a+B, ⇔a=d αが実数 αが純虚数 α = -α, a≠0 3 絶対値 複素数 α=a+bi に対して 1. 定義 |a|=|a+bil=√²+62 3. 2点α, β間の距離は α -α a a a-8=a-B₁ aß=aß. (2) - B |B-al -a 154 次の点を複素数平面上に記せ。 STEPA O a=a+bi A(a) a=-a+bi a 16 2.性質|a|=aa, |a|=|-2|=|a| 実物 a=a+bi ax ✓ 158 a=-a-bi-baa-bi ✓ 159 A(2-3i), B(−3+i), C(−2−2i), D(3), E(-4i) △*155 (1) α=a+2i, β=6-4i とする。 3 点 0, α, βが一直線上にあるとき, 実数 aの値を求めよ。 (2) α=3-2i,β=b+6i, y=5+ci とする。 4点 0, α, β,yが一直線上に あるとき, 実数 b,cの値を求めよ。 37 □ 156 α=3+i, β=2-2i であるとき、 次の複素数を表す点を図示せよ。 (1) α+β (2)α-β (3) 2a+β (4) α-2β (5) -2a+β * 157 次の複素数を表す点と実軸, 原点, 虚軸に関して対称な点の表す複素数をそ れぞれ求めよ。 *(1) 1+i (2) -3+4i (3) -√2-3i *(4) 4-√3i *16 16

回答募集中 回答数: 0
数学 高校生

2.1 解き方ってこれでも問題ないですよね??

作り の符号で特 を考える とみ を図示 -26 28 2を買 同じ、 2倍 解答 内の 点 (1) AB+EC+FD-(EB+FC+AD) =AB+EC+FD-EB-FC-AD =(AB+BE)+(EC+CF)+(FD+DA) =AE+EF+FA=AF+FA kit. 基本例題2 ベクトルの等式の証明, ベクトルの演算 (1) 次の等式が成り立つことを証明せよ。 AB+EC+FD=EB+FC+AD 3倍 指針 (1) ベクトルの等式の証明は、通常の等式の証明と同 じ要領で行う。 ここでは, (左辺) - (右辺) を変形し て=0 となることを示す。 (2) (ア) x=2a-36-c, y=-4a+56-3C のとき, ya, b,こで表せ。 (イ) 4-3a=x+66 を満たすxをaで表せ。 (3x+y=d, 5x+2y=を満たす,をもで表せ。 を利用するこ 合成 P□+□=PQ, P=PQ ベクトルの計算では,右の変形がポイントとなる。 分割PQ=P+ℓ, (2) ベクトルの加法,減法,実数倍については,数式PQ=Q-□P と同じような計算法則が成り立つ。 向き変え PQ=-QP PP=0・・・ 同じ文字が並ぶと (ア) x=2a-36-c, y=-4a+56-3cのとき, の安心 x-yをa,b,c で表す要領で。 (イ) 方程式 4x-3a=x+66 (ウ) 連立方程式 3x+y=a, 5x+2y=b を解く要領で。 =AA=0 ゆえに AB+EC+FD=EB+FC+AD (2) (7) x−y=(2a-36−č) − (−4ã+5b−3c) =2a-36-c+4a-5b+3c =6a-8b+2c (イ) 4x3x+65から 4x-x=3a+65 よって ゆえに 3x=3a+66 x=a+2b Bi (1) 3x+y=a.. ① x2-② から これを①に代入して 6a-3b+y=a よって 1, 5x+2y=6 =2ab y=-5d+36 00000 ② とする。 CA 384 基本事項 ②③ ... CIDE 左辺(右辺) Sa+da+ sa 向き変えEB=BE など。 合成AB+BE = AÉ など。 検討 A□+□△+△A=0 (しりとりで戻れば ① ) この変形も役立つ。 ただし, それぞれ同じ点。 なお,00と書き間違えな いように。 両辺を3で割る。 6x+2y=2a 1-) 5x+2y=6 x =2a-b 387 1章 ベクトルの演算

回答募集中 回答数: 0
数学 高校生

121.2.イ 解答2行目の「法5と3は互いに素なので」 とはどういうことですか? 単純に3x≡9 (mod5)が3xと9で約分できる、 という発想ではないということですか?

494 演習 例題 121 合同式の性質の証明と利用 00000 (1) か.492 基本事項の合同式の性質 2、および次の性質を証明せよ。 ただし は整数, m は自然数とする。 5aとが互いに素のとき ax=ay (modm)⇒x=y (modm) (2)次の合同式を満たすxを,それぞれの法mにおいて, x=a(mod m) [a は mより小さい自然数] の形で表せ(これを合同方程式を解くということがある)。 (ア)x+4=2 (mod 6 ) (イ) 3x≡4 (mod 5 ) 指針 pp.492 基本事項 ③3 (mod m) のとき, -■はmの倍数である。 合同式 加法・減法・乗法だけなら普通の数と同じように扱える (イ) 「4 (mod 5) かつ 指針▷ (1) 方針はp.493の証明と同様。 (2) 解答 (1) 2 条件から, a-b=mk,c-d=ml (k, lは整数) と表され 性質を適用する。 が3の倍数」となるような数を見つけ, a=b+mk, c=d+ml よって a-c=(6+mk)-(d+ml)=b-d+m(k-l ゆえに a-c-(b-d)=m(k-1) (2) (ア) 与式から 5ax=ay (modm) ならば, ax-ay=mk(kは整数)と表 され a(x-y)=mk aとは互いに素であるから x-y=ml (lは整数) よってx=y (mod m) x=2-4 (mod 6 ) 24 (mod6) であるから (イ) 49 (mod5) であるから、与式は 法5と3は互いに素であるから ...... よって a-c=b-d (modm) x=4 (mod 6 ) 3x=9 (mod 5) x=3 (mod 5) の倍数 → = ▲k(kは整数) <pg が互いに素でpk が g の倍数ならば k はgの倍数である。 検討 合同方程式の問題は表を利用すると確実 (2)(イ)については, 次のような表を利用する解答も考えられる。 別解 (イ)x=0, 1,2,3,4について, 3xの値は右の表 のようになる。 3x=4 (mod5) となるのは, x=3のと きであるからx=3 (mod5) 注意 合同式の性質5が利用できるのは, 「aとが互いに素」であるときに限られる。 例えば, 4x=4 (mod6) ① については, 4と法6は互いに素ではないから, ①よりx=1 (mod6) としたら誤り! 性質2。 移項の要領。 -2-4-6 ( 6の倍数) また, 推移律を利用。 性質を利用。 XC 01 2 3 4 3x 0 3 6=1 9=4 12=2 2 表を利用の方針で考えると,右の表からわか るように x=1, 4(mod 6 ) である。 x = (mod m) またはx=6 (modm) を x=a,b (modm)」と表す。] x 0 1 3 4 5 4x 0 4 8=2_12=0_16=4 20=2 漢 練習 (1) p.492 基本事項の合同式の性質 を証明せよ。 ③ 121 (2) 次の合同式を満たすxを, それぞれの法mにおいて, x=a (mod m) の形で 表せ。 ただし, a はより小さい自然数とする。 (ア) x-7=6 (mod 7 ) (イ) 4x5 (mod11) (ウ) 6x=3 (mod 9 ) (1 IC (1) F

未解決 回答数: 1
1/8