学年

教科

質問の種類

数学 高校生

(ii)と(iii)の途中式がよくわかりません。 教えてほしいです🙇🏻‍♀️

練習問題 5 関数のクラフ 2次関数 y=x2-6x+10 のグラフを次のように移動させてできるグラ フの方程式を求めよ. (i) x軸に関して対称移動 (ii) y 軸に関して対称移動 (Ⅲ) 原点に関して対称移動 精講 対称移動についても平行移動と同様、頂点に注目するのがポイント です.ただし,対称移動の場合はグラフの上下が反転する場合があ ります.上下が反転するときはの係数の符号が反転することになります。 解答 平方完成すると y=(x-3)2+1 (軸対称 元の なので,頂点の座標は (31) である. グラフ (i) x軸に関して対称移動すると, 頂点は (3-1)に移り, グラフの上下が反転す るのでx2の係数は -1 となる. よって, 求めるグラフの方程式は、 (-3, 1) (3.1) (-3, -1) 0 (3,-1) x y=(x-3)2-1 (=-x+6.z-10) 原点対称 軸対称 (y軸に関して対称移動すると,頂点は(-3, 1) に移り,グラフの形状は 変化しないのでの係数は1となる. よって, 求めるグラフの方程式は, y=(x+3)'+1 (=x2+6x+10) (曲) 原点に関して対称移動すると,頂点は(-3,-1)に移り、グラフの上下 が反転するのでの係数は-1となる. よって、求めるグラフの方程式は、 y=-(x+3)-1 (=-x²-6x-10) コメント 移動に

未解決 回答数: 1
数学 高校生

(i)と(iii)の問題についてです。 二枚目の写真の答え方でもいいですか?

72 第2章 関数と関数のグラフ 練習問題 5 2次関数 y=x2-6x+10 のグラフを次のように移動させてできるグラ フの方程式を求めよ. (i) x軸に関して対称移動 (i) y 軸に関して対称移動 (Ⅲ) 原点に関して対称移動 S 精講 対称移動についても平行移動と同様、頂点に注目するのがポイント です.ただし,対称移動の場合はグラフの上下が反転する場合があ ります.上下が反転するときはの係数の符号が反転することになります。 解答 =g 平方完成すると (y軸対称 y=(x-3)2+1 なので,頂点の座標は (3,1) である. 元の (i) x軸に関して対称移動すると,頂点は (3-1)に移り,グラフの上下が反転す (-3, 1) (-3,-1) 0 (3,1) グラフ (3, -1) X 求めるグラフの方程式は, y=(x-3)-1 (=u2+6-10) り長いび 原点対称った るので㎡の係数は -1 となる。よっては (x軸対称) (y軸に関して対称移動すると, 頂点は (-3,1) に移り、グラフの形状は 変化しないのでの係数は1となる.よって, 求めるグラフの方程式は, y=(x+3)'+1 (=x2+6x+10) (原点に関して対称移動すると,頂点は(-3,-1)に移り、グラフの上下 が反転するのでの係数は-1となる. よって、求めるグラフの方程式は、 y=(x+3)-1 (=-x²-6x-10) コメント 対称移動においても,平行移動と同じように一般的な法則があります。 対称移動の一般則 x 軸に関して対称移動

未解決 回答数: 1
数学 高校生

赤線を引いたところが数学的になぜ言えるのか分かりません。感覚的には分かるのですが… また、x軸、y軸、y=x、原点対称の媒介変数表示された曲線は赤線のことが言えるのでしょうか。

例題 C2.78 いろいろな曲線(2) 3 媒介変数表示 (517) **** x=cos't tを媒介変数とするとき, 曲線 ly=sin't の概形をかけ. [考え方 例題 C2.77 で求めたアステロイドである。 対称性を利用すると、右のようにOSIST の範囲 概形を調べれば、全体をかくことができる. yy=x/ cost, sint の周期は2mであるから, 0≦t≦2 の範囲で 解答 考える.t=0,0,0, 2-0 に対応する点をそれぞ P,Q,R, S とし,P(x,y) とすると、sinx, c030 x=cos0y=sin'0 cos(0)=-cos'0=-x, sin (n-0)=sin0=y したがって,Q(x, y) より,この曲線はy軸に関して対称 cos(n+0)=-cos0=-x, sin(n+0)=-sin'0=-y したがって,R(-x, -y)より,この曲線は原点に関して対称 cOS (2-0)=cos' Q=x, sin (2-0)=-sin0=-y したがって, S(x, -y) より,この曲線はx軸に関して対称 4 まず対称性を調べ P 0 R さらに,t= .0 に対応する点をP(x, y) とすると, x 軸対称 *y 軸対称 π 2 =cos (46)=sin {(10)}= sin(+0) 4 4 y=sin (6) =cos -6)=cos π 2 (4-0)} =cos (+0) 原点対称 *y=x に関して 称 の4つの対称性が したがって,t=7 +0 に対応する点TはT(y.x) となる.かる. すなわち、この曲線は直線 y=x に関して対称である。 T よって、この曲線の≦ts の範囲の概形を調べる. y y=x/ π π t0. 6 3√3 v2 81-8 x14 y0 > したがって、上の表より, 相当する 24点を定めると右のようになる。 よって、Ot2 における曲線の 概形は右の図のようになる. 4 42 12/ TC 4 22 260 √2 2 40 0 44 OPの長さを求め と次のようになる t 0 √7 OPの長さ 1 4 1671 練習 [x=sint の概形をかけ、 •p.C2-170 C2.78] を媒介変数とするとき、曲線 = sin2t ****

未解決 回答数: 0
数学 高校生

数II 微分 この問題の答えが私が解いた答えと合わないのですが、なぜ答えのようにならなくてはいけないのかわかりません。赤線引いたところが間違えたところです。 教えていただきたいです🙇‍♀️

356 重要 例題 224 区間に文字を含む3次関数の最大・最小 f(x)=x-6x2+ 9x とする。 区間 a≦x≦a+1 における f(x) の最大値 求めよ。 指針 この例題は, 区間の幅が1 (一定) で, 区間が動くタイプである。 00000 M() を 基本200 まず, y=f(x) のグラフをかく。次に, 区間 a≦x≦at1をx軸上で左側から移動し ながら, f(x) の最大値を考える。 場合分けをするときは,次のことに注意する。 A 区間で単調増加なら, 区間の右端で最大。 区間で単調減少なら, 区間の左端で最大。 両極値をとるxの値がともに区間に含まれることはないから © 区間内に極大となるxの値があるとき,極大となるxで最大。 >0 (8) 区間内に極小となるxの値があるとき, 区間の両端のうちf(x)の値が大きい方 で最大→区間の両端で値が等しくなる場合が境目となる。 すなわち f(x)=f(a+1) となるとαの大小により場合分け。 A 最大 ® (1)M 最大 最大 [2] a<1ma+ 0≦a <1のと f(x)はx=1 M(a)=1 次に, 2 <α <3 f(a)=f(a+1) a3-6a2+▪ 3a² ゆえに よって a= 2 <α <3と5< [3] 1≦a< f(x)はx= M(a)= 解答 最大 または 9+√33 [4] 6 f(x)はx= M(a) f'(x)=3x²-12x+9 =3(x-1)(x-3) f'(x) = 0 とすると x=1,3 f(x) の増減表は次のようになる。 x 1 f'(x) + 0 - 3 f(x) 解答の場合分けの位置のイ y=f(x)メージ 以上から 4--- y=f(x)| 4 NN [2] [3] [4] 0 + 極大| 極小 01 3 a01 a 3a+1 x 4 0 検討 よって, y=f(x)のグラフは右上の図のようになる。 ゆえに、f(x)のa≦x≦a+1における最大値 M (α) は,次 のようになる。 [1] a+1 <1 すなわち α <0の [1] y とき f(x)はx=α+1で最大となり 1指針のA [区間で単調増 加で,右端で最大]の場 最大 合。 M(a) =f(a+1) =(a+1)-6(a+1)^+9(a+1) =a³-3a²+4 1 1 a O 1 a+1 3 3次関数のク p.344 の参考 ラフは点対 はない。す るとき 対称ではな 練習 |上の解答の =1/2とし Q= なお、放物 f(x)=x³- ⑤224よ。

回答募集中 回答数: 0
1/7