数学
高校生

(i)と(iii)の問題についてです。
二枚目の写真の答え方でもいいですか?

72 第2章 関数と関数のグラフ 練習問題 5 2次関数 y=x2-6x+10 のグラフを次のように移動させてできるグラ フの方程式を求めよ. (i) x軸に関して対称移動 (i) y 軸に関して対称移動 (Ⅲ) 原点に関して対称移動 S 精講 対称移動についても平行移動と同様、頂点に注目するのがポイント です.ただし,対称移動の場合はグラフの上下が反転する場合があ ります.上下が反転するときはの係数の符号が反転することになります。 解答 =g 平方完成すると (y軸対称 y=(x-3)2+1 なので,頂点の座標は (3,1) である. 元の (i) x軸に関して対称移動すると,頂点は (3-1)に移り,グラフの上下が反転す (-3, 1) (-3,-1) 0 (3,1) グラフ (3, -1) X 求めるグラフの方程式は, y=(x-3)-1 (=u2+6-10) り長いび 原点対称った るので㎡の係数は -1 となる。よっては (x軸対称) (y軸に関して対称移動すると, 頂点は (-3,1) に移り、グラフの形状は 変化しないのでの係数は1となる.よって, 求めるグラフの方程式は, y=(x+3)'+1 (=x2+6x+10) (原点に関して対称移動すると,頂点は(-3,-1)に移り、グラフの上下 が反転するのでの係数は-1となる. よって、求めるグラフの方程式は、 y=(x+3)-1 (=-x²-6x-10) コメント 対称移動においても,平行移動と同じように一般的な法則があります。 対称移動の一般則 x 軸に関して対称移動
(i) y=(x-3)-1 (!!!) y=(x+33-1

回答

疑問は解決しましたか?