学年

教科

質問の種類

数学 高校生

(1)でこのやり方でやったらダメな理由を教えてください

「基本 例題 178 対数の表現 ①の (1) log23=a, log35=bのとき, 10g210 と 10g 1540 を a b で表せ。 1 (2) logxa= " logx b= 3 logxc= 8 1 24 のとき, 10gabecxの値を求めよ。 [名城大] [久留米大] (3) a,b,c を1でない正の数とし, logab=a, logbc=B, logca=yとする。 このとき, aβ+By+ya= 1 1 _+ + a B 1 r が成り立つことを証明せよ。 基本 177 指針 (1)10, 15, 40 をそれぞれ分解して,2,3,5の積で表すことを考える。 log210=logz(2.5)=1+10g25 底の変換公式を利用して, 10g25をα 6で表す。 また, 101540 は, 真数 40=52 に着目して2を底とする対数で表す。 (2)10gabcx= 1 logx abc である。 logxabc の値を求める。 (3) 右辺を通分すると, 分母に aβy が現れる。 これを計算してみる。 (1)10g210=10gz (2.5)=log22+log25=1+log25 建答 ここで log25= log35 log32 =log23.10g35=ab log32= 10g23 よって log210=1+ab 前ページ検討も参照。 log240 また log 15 40= log2(5.23) log25+3 == log2 15 log2(3.5) log25=ab (前半から) log2 310g25 = ab+3 ab+3 = a+ab a(b+1) (2)10gxabc=logxa+10gx6+10gxc= 1 1 1 + + 3 8 || 24 12 よって logabc x= =2 logx abc (3) + + a 1 B 1 Y aβ+By+ya aby aβy=logablog.clogca=logab• ① loga C =1 2 log. = (3)別解 1 log■ aβ=logablog.c=log 同様に βy=log.a logab logac ra=logcb 1 1 1 したがって であるから,①から + + a B =aβ+By+ya が成り Y 立つ。 したがって, 等式は証明された。 (左辺) =logac+log.a+log =1+1/+1/ B

解決済み 回答数: 1
数学 高校生

数Cの質問です! [ ]で囲まれているところの計算式を 分かりやすく教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

その 基本 例題 13 なす角からベクトルを求める B, ACOR (1) 正の数とし, ベクトル = (1,1) 2.29 基本事項 2 00000] (1) があるとする。い まことのなす角が60°のときの値を求めよ。 [(1) 立教大] (2)=(1,2)=(m,n)(mとnは正の数)について ||=√10 であり, 33 1章 とのなす角は135°である。 このとき,m, nの値を求めよ。 基本12 3 る。 CHART & SOLUTION なす角からベクトルを求める = (a1, a2), = (b1, bz)とする。 内積をat=a||| cose, at=ab+azb2の2通りで表す 内積を2通りの方法で表し, これらを等しいとおいた方程式を解けばよい。 (1) は (2) ではm, nが正の数であることに注意する。 ■ ) を解く 問 解答 0° 1x 60° 1 1x 求めよ と (1)=1×1+1x(-p)=1-p |a|=√12+1?=√2,16|=√12+(-b)=√1+12 ←成分による表現。 a = |a|||cos60°から 1-p=√2√1+x ① 定義による表現。 201 ①の両辺を2乗して整理すると よって p=2±√3 p2-4p+1=0 (1)=1/12(12) ここで,①より, 1p0 であるから 0<p< 1 ゆえに p=2-√√3 整理する 1+0 であるから, ①の右辺は正。 よって, ①の左辺も正であり, 1-p>0 (2)|5|=√10から ||=10 よって m²+n2=10 ...... ① ||=√12+(-2)²=√5 であるから a•6=|a||6|cos 135°=√/5 ×√10×(-1/2)=-5 COS また, a1=1xm+(-2)xn=m-2n であるから m-2n=-5 定義による表現。」 ベクトルの内積 ←成分による表現。 ゆえに m=2n-5..... ② ②①に代入すると (2n-5)2+n2=10 整理すると 5n2-20n+15=0 よって よって n2-4n+3=0 ゆえに n=1,3 ②からn=1のとき m=-3, n=3 のとき m=1 (n-1)(n-3)=0 m, n は正の数であるから PRACTICE 13° ←m=-3<0 から不適。 m=1, n=3 \)\)= 20 (1) OA = (x, 1), OB=(2,1) について, OA, OB のなす角が45°であるとき, xの 値を求めよ。 (2)=(2-1) = (m,n) について,16=2√5であり,ことのなす角は60°で ある。このとき,m, nの値を求めよ。

解決済み 回答数: 1