学年

教科

質問の種類

数学 高校生

例22の問題でどうして1.64が出てきて、0.45になるのですか?

2=24-30= ==-1.2 P B(180) 第2節 統計的 97 練習 3 32 出る回数が異常に大きくても、 また、異常に 小さくても、仮説が棄却されるように, 棄却 ある1個のさいころを180回投げたところ、1の目が24回出た。この さいころは、1の目が出る確率が 1 ではないと判断してよいか。 有意 水準5%で検定せよ。 1.96または1,462 前ページの例21では、仮説に対して、表が m=306=5 2と30 5 片側検定 判断できない 27 城を両側にとっている。 このような検定を 両側検定という。これに対し、次の例のよ うに棄却域を片側にとる検定を片側検定という。 例 22 かたがね 0 有意水準αの棄却域 516 統計的な推測 ある種子の発芽率は従来 60%であったが, それを発芽しやすい ように品種改良した新しい種子から無作為に150個を抽出して種 をまいたところ, 101個が発芽した。 品種改良によって発芽率が 上がったと判断してよいかを, 有意水準 5% で検定してみよう。 品種改良した新しい種子の発芽率を とする。 品種改良によって発 芽率が上がったなら, 0.6である。 ここで,「品種改良によって 発芽率は上がらなかった」, すなわち p=0.6 という仮説を立てる。 この仮説が正しいとすると, 150個のうち発芽する種子の個数 X は,二項分布 B (150, 0.6) に従う。 Xの期待値 mと標準偏差のは m=150×0.6=90, o=√150×0.6×0.4 = 6 X-90 よって, Z= は近似的に標準正規分布 N (0, 1)に従う。 6 0.5-0.05=0. 正規分布表よりP (0≦Z≦1.64)=0.45 であるから,有意水準5% の棄却域は Z≧1.64 101-90 X=101 のとき Z = = =1.83・・・ であり,この値は棄却 6 に入るから, 仮説は棄却できる。 すなわち, 品種改良によって発芽率が上がったと判断してよい。

未解決 回答数: 0
数学 高校生

数Bの練習問題106の部分なのですが矢印を引いているところがなかなかxの値にならず計算方法を教えていただきたいです。よろしくお願いします🙇‍♀️

練習問題 従うものとする。 1106 正規分布の標準化 大学の入学試験において, 受験生 5400人全体の平均は53.6点, 標準偏差は 19.2点であった。 試験の得点 X は正規分布 この大学を受験したAさんの得点は68点であった。 Xは正規分布に従うから,Z= よって, X-アイ ウ エオ [カ] は標準正規分布に従う。 P(X≧キク)=P(Z≧ケコサ= 0. シスセソ この大学の受験生を任意に選んだとき、 この受験生の得点が68点以上である確率は,正規分布表を利用すると となる。 したがって, 受験生全体に得点の高い方から順位をつけたとき, Aさんの順位はタに属すると考えられる。 タの解答群 1位から299位の間 300位から599 位の間 (1 ③900位から1199 位の間 ⑥1800位から 2099 位の間 ④ 1200位から1499位の間 2400位から 2699 位の間 ⑦ 2100位から2399位の間 600位から 899 位の間 ⑤ 1500位から1799位の間 ⑨ 2700位から 2999 位の間 受験生全体の67% が合格した。 合格最低点はおよそチ 点であったと考えられる。 チ の解答群 36 ① 39 ② 42 (3 45 ④ 48 ⑤ 51 ⑥ 54 ⑦ 57 (8 60 963 解答 01 Z = (1) 確率変数 X は正規分布 N (53.6, 19.22) に従うから X - 53.6 19.2 確率変数の標準化 とおくと, Zは標準正規分布 N (0, 1)に従う。 X が正規分布 N (m²) に従 Od.d うとき, 68-53.6 X-m X ≧ 68 のとき Z≧ = 0.75 であるから 確率変数 Z = は 6 19.2 標準正規分布N (0, 1) に従う。 7 P(X≧68)=P (Z≧0.75) この 章 さらに =0.5-u(0.75)=0.5-0.2734 = 0.2266 5400 x 0.2266=1223.64≒ 1224 よって, Aさんの得点は高い方からおよそ1224番目と考えることが 正規分布表より u(0.75) = 0.2734 統計的な推測 できる。ゆえに, Aさんの順位は (2) 負の数 - (m>0) に対して 1200位から 1499 の間 (④) P(Z≧-m) = 0.5+P-m≦Z≦0) よって P(Z≧-m) = 0.67 のとき 正規分布表より,これを満たすm の値は = 0.5+P(0≦z≦m)=0.5+u(m) 0. 合格者は受験生全体の50%を 超えているので負の数 対して に P(Z≧-m)=0.67 1 u(m) = 0.17 を満たす m を求める。 m = 0.44 正規分布表 X-53.6 ゆえに、合格最低点は さらにZ-0.44 のとき -0.44 = およそ45点 (③) より X = 45.152 u(0.44) = 0.1700 19.2

解決済み 回答数: 1