学年

教科

質問の種類

数学 高校生

解説OH🟰Kにしてますが他のものだと答え変わってきませんか? 私は辺の比からOHとBHを√2K、CH=√6Kと置きました

用いて、 求める CD +6 ECT 0 24 底面が (1) △OBH において, BH:OH = 1:1 より BH-1 A OH △OCH において, CH: OH =√3:1 より CH-√3 A OH OH = k(k>0) とおくと, BH=k, CH=√3k と表されるから、 ▲HBC において, 余弦定理により (√21) ²= k²+(√/3 k)2-2-k√3 kcos 150° 21=k²+3k² +3k² k2=3 k>0 より k=√3 よって BH=3, CH = 33, OH = 13 AH OHA=90°の直角二等辺三角形であるから 24 (1) BH OH CH OH CH= I OH = √ (2) SOAH = 45° とする このとき AH = BH = B Point o 難易度 ア , 9 すい 右の図のような四角錐 O-ABCD がある。 底面 ABCD は, 」各2 AD//BCの台形であり, 点Oから底面ABCDに下ろした垂線は, 対角線 AC と BD の交点Hを通る。このとき,BC=√21, ∠OBH = 45°、∠OCH = 30°, ∠BHC = 150° とする。 A 3つの角の大きさが45℃ 45℃ 90° の直角三角形の辺の比は ya 1:2:√3 オ 1:1:√2 3つの角の大きさが30℃ 90% 60° の直角三角形の辺の比は 目標解答時間 カ √2/45° 1 45° 1 1 であることを用いると, である。 (B 与えられた辺や角と求める辺や 角を合わせて, 3辺と1角のとき 27 余弦定理を用いる。 2 130° 12分 A √3 ve the 60% 1 B 図形と計量 H (45% 150° D /21 25 30 C (

未解決 回答数: 0
数学 高校生

数1の内容です。 cosB≧0であるからcosB=と展開されて いくのですが、 なぜcosB≧0であると後のようになるのでしょうか

= Cl PR ② 131 とする。 2abc ²+0²-8² るから、 で割ると c²+0²-1² 「△ABCにおいて,面積をS で表す。 次のものを求めよ。 ただし, (2) は鈍角三角形ではないもの PR (1) 余弦定理により cos B= sin B>0 であるから (1)a=11,6=7,c=6 のとき cos B, S (2) a=√2.c=√6,S=√2 のとき b,C RD 62+112-72 2・6・11 sinB=√1-cos2 B: = 余弦定理により 2 ゆえに √6 △ABC は鈍角三角形ではないから 0°<B≦90° よって, cos B≧0 であるから cos B=√1-sin²B= sin B= よって = よって S=12casinB=121・6・11・2/10 -=6/10 (2) S=1/2 casinB から √2=12√6-√2 sin B ゆえに よって 別解 (後半) cos C= C=90° 108 2.6.11 √2 = 2√2+2sin C sinC=1 C=90° 9 11 6² =(√√ 6 )² + (√√ 2)²-2·√√6·√2. 60 であるから b=2 また、S=1/12 absinC から 2ab \2 = 2√10 11 2 2 1 √ ₁ - ( 1²6 )² = √ / 3 第4章 図形と計量 ― 147 300 200 (1 √√3 = =4 a²+b²-c²_(√2)² +2²-(√6)²=0 = 2√2.2 √11²-9² 11 √(11+9)(11-9) √40 11 11 別解 (1) (後半) ヘロンの公式 (本冊 p.211) を用いると 2s=11+7+6 から s=12 よって S=√12.1.5.6 =6√10 +√√1-4-√√ 6 ←62=6+2-4=4 4章 PP inf. α=√2,b=2, c=√√√6 ²5 a² + b²=c² C= が成り立つことに気づけ ば、 三平方の定理から C=90° がわかる。

未解決 回答数: 0
数学 高校生

このh=√21/7のhってどの部分ですか?

内(2) CD の EM を取り 正三角 (3) 0°< よって sin0=√1-cos' sin />0であるから AAEM= AE AM sin 0 2 = -1/2-2√7-3√/3/15 S= /21 5 = √1-(√²1)² = √15 6 3√ 35 2 1辺の長さが3の正三角形ABCを底面とし, PA=PB=PC=2 の四面体PABCにおいて頂 練習 170 点P から底面ABCに垂線PHを下ろす。 (1) PHの長さを求めよ。 (2) 四面体 PABC の体積を求めよ。 (3) 点Hから3点P, A, B を通る平面に下ろした垂線の長さんを求めよ。 P (1) APAH, △PBH, APCH はいずれ も∠H=90°の直角三角形であり PA=PB=PC, PHは共通 であるから よって AH=BH=CH A ゆえに,Hは△ABCの外接円の中心であり, AHは△ABC の外接円の半径であるから, △ABCにおいて, 正弦定理によ 3 り =2AH sin 60° APAH=APBH=APCH 3 よって 3 √3 AH= 3 2sin 60° 2 2 ÷ =√3 △PAH は直角三角形であるから, 三平方の定理により PH=√PA²-AH²=√22-(√3)=1 (2) 正三角形ABCの面積をSとすると 9 √3 3.3 sin 60° 2 2 2 よって,四面体 PABC の体積を Vとすると DAV= =1/23・S・PH= 1.9√3 4 • 6 ・1= 9√3 4 3√3 4 H B ←正弦定理により AB =2R sin 60° Rは△ABCの外接円の 半径で, R=AH である。 ←四面体PABCは三角 であり、 体積は 1/3×(底面積)×(高さ) で求められる。△ABC を底面とすると, 高さは PH。 4章 練習 [図形と計量]

未解決 回答数: 0
数学 高校生

数学1 図形と計量 (x+√13)(x-√13)>0 がなぜ、 x<-√13,√13<x になるんですか?

例題 158 三角形の成立条件、鈍角三角形となるための条件 CA=3である△ABCがある。 BC=x, xのとりうる値の範囲を求めよ。 △ABC が鈍角三角形であるとき, xの値の範囲を求めよ。 三角形の成立条件|b-c| <a<b+c を利用する。 ここでは, [3-21<x<3+2の形で使うと計算が簡単になる。 (2) 鈍角三角形において, 最大の角以外の角はすべて鋭角であるから, 最大の角が鈍 角となる場合を考えればよい (三角形の辺と角の大小関係より, 最大の辺を考える ことになる)。 そこで, 最大辺の長さが3かxかで場合分けをする。 例えば CA(=3) が最大辺とすると, ∠B が鈍角⇔ COS B <0⇔ c2+α²-62 3-2<x<3+2 -√√5<x<√√5 となり、+αが導かれる。これに6=3,c=2, a=x を代入して,xの2次不 等式が得られる。 00000 [類 関東学院大 ] /p.248 基本事項 3 4 重要 159 -<0c²+a²-b² <0 2ca (1) 三角形の成立条件から よって 1<x< 5 解答 (2)どの辺が最大辺になるかで場合分けをして考える。 [1] 1<x<3のとき,最大辺の長さは3であるから,そ の対角が90°より大きいとき鈍角三角形になる。 ゆえに 32>22+x2 すなわち x2-5<0 よって (x+√5)(x-√5)<0-(+5)+2 ゆえに 1<x<3との共通範囲は 1<x<√5 [2] 3≦x<5のとき, 最大辺の長さはxであるから, そ (1) から x<5 ......... の対角が90°より大きいとき鈍角三角形になる。 ゆえに x2>22+32 すなわち よって ゆえに 3≦x<5との共通範囲は [1], [2] を合わせて 参考鋭角三角形である条件を求める際にも,最大の角に着目 し、最大の角が鋭角となる場合を考えればよい。 x2-13> 0 (x+√13) (x-√13) >0 x<-√13,√13 <x √13 <x<5 1<x<√5,√13 <x<5 259 <|x-3|<2<x+3または |2-x|<3<2+xを解い てxの値の範囲を求め てもよいが, 面倒。 <(1) から 1<x [1] 最大辺が CA=3 A 3 C B> 90°⇔ AC2 > AB2+BC2 [2] 最大辺がBC=x A A>90°⇔BC AB' + AC2 4 章 正弦定理 練習 AB = x, BC=x-3, CA=x+3である △ABCがある。 〔類 久留米大 ] 158 (1) x のとりうる値の範囲を求めよ。 (2) △ABCが鋭角三角形であるとき、xの値の範囲を求めよ。 p.263 EX113 /

未解決 回答数: 0