学年

教科

質問の種類

数学 高校生

数学Aの場合の数と確率です ここの95と96を回答を読んでもわからないです、 あと96の[1]回答の5C3がなんで5・4・3と4・3・2・1になるのですか、? 分かりやすく教えて頂きたいです、!

6 確率の基本性質 1 確率の基本性質 1. どんな事象についても 0≤P(A) ≤1 とくに空事象について P(Ø) = 0, 2. 確率の加法定理 事象 A,Bが互いに排反であるとき P(AUB)=P(A)+P(B) 事象 A,B,Cが互いに排反(どの2つの事象も互いに排反)であるとき、3つの事象 のいずれかが起こる確率P (AUBUC) は P(AUBUC)=P(A)+P(B)+P(C) 2 一般の和事象の確率 2つの事象A,Bについて 3. 余事象と確率 92 0 *93 0 94 *96 P(A)+P(A)=1 DOVA 全事象Uについて P(U)=1 P(AUB)=P(A)+P(B)-P(A∩B) すなわち □ P(A)=1-P(A) A問題 HOTEL 1個のさいころを投げるとき, 「奇数の目が出る」という事象を A,「素数の 目が出る」 という事象をBとする。 ◆教p.50 例 15 (1) 事象 A∩B, AUB を表す集合をそれぞれ求めよ。 (2) 確率P(A∩B), P (AUB) をそれぞれ求めよ。 00000000000000 1から10までの10枚の番号札の中から1枚引くとき、次の事象のどれとど れが互いに排反であるか。 ●教 p.51 事象A: 偶数の札が出る 事象 C: 6の約数の札が出る 事象B : 奇数の札が出る 事象D: 7 の札が出る ( 1等 2等、3等の当たる確率がそれぞれ 5 1030 100 100' 100 であるくじがあ 神 *95 白玉5個、赤玉6個、青玉1個の入った袋から, 2個の玉を同時に取り出す とき 2個とも同じ色である確率を求めよ。 ◆教p. 53 例題 4 る。このくじを1本引くとき、 次の場合の確率を求めよ。 ◆教p.53 例 16 (1) 1等または2等が当たる。 (2) 1等、2等, 3等のいずれかが当たる。 赤玉5個、白玉7個の入った袋から, 4個の玉を同時に取り出すとき,その 中に赤玉が3個以上含まれる確率を求めよ。 教p.53 例題 4 97 4枚の硬貨を同時に投げるとき,表が3枚以上出る確率を求めよ。 教p.53 例題 4 第1章場合の数と確率

回答募集中 回答数: 0
数学 高校生

63. 記述に問題点等ありますか??

る確率 機械 63 良品 械 A を当 の意 製造 3 50 ベイズの定理 重要 例題 63 袋には赤球10個,白球5個,青球3個;袋Bには赤球8個,白球4個,青球 00000 ;袋Cには赤球4個,白球3個,青球5個が入っている 1 3つの袋から1つの袋を選び, その袋から球を1個取り出したところ白球であっ それが袋Aから取り出された球である確率を求めよ。 した。 袋Aを選ぶという事象をA, 白球を取り出すという事象をWとすると, 求める確率は P(WNA) 条件付き確率Pw (A)= よって、P(W),P(A∩W)がわかればよい。まず,事象 Wを3つの排反事象 [1] A から白球を取り出す,[2] B から白球を取り出す, [3] C から白球を取り出す に分けて, P(W) を計算することから始める。 また P(A∩W)=P(A)P(W) 袋 A, B, C を選ぶという事象をそれぞれ A, B, C とし, 白球 | ⑩ 複雑な事象 を取り出すという事象をWとすると 排反な事象に分ける P(W)=P(A∩W)+P(B∩W) + P(COW) 1 1 5 3 18 よって 求める確率は =P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 1 5 + 3-2 2-3 41 +2²7 + 1/²2 - 11 12 54 4 + 1 4 3 18 検討 ベイズの定理 上の例題から、Pw (A)= AMB, A₂B, 一致し,PB (Ak)= P(W) である。・・・・・・・・・ Pw(A) = P(ANW) _ P(A)PÂ(W) _ 5 P(W) P(W) 54 . P(B) ·|· P(B) 1 10 4 27 加法定理 乗法定理 基本 62 A B C AOW BOW Cow 2 27 W 5 542 P(A)PA (W) P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 一般に, n個の事象 A1, A2, ・・・・・・, An が互いに排反であり, そのうちの1つが必ず起こるもの とする。このとき 任意の事象B に対して,次のことが成り立つ。 PB(AR)= P(Ah) PAN (B) (k=1,2,.., n) P(A)PA,(B)+P(A2)P,(B)+......+P(A)Pa,(B) | これをベイズの定理という。このことは, B=(A∩B) U(A20B) U......U (A∩B) で, A∩Bは互いに排反であることから、上の式の右辺の分母が P(B) と一 P(B∩Ak)P(A∩B) かつP(A∩B)=P(Ak) Pa, (B)から導かれる。 001 が成り立つ。 14 12 A-0004 練習 =) 45 (1 63 仕入れた比率は4:3:2であり, 製品が不良品である比率はそれぞれ3%, 4%, ある電器店が A 社, B 社 C社から同じ製品を仕入れた。 A社、B社、C社から | 5%であるという。 いま、大量にある3社の製品をよく混ぜ,その中から任意に1 [類 広島修道大] (p.395 EX46 |個抜き取って調べたところ, 不良品であった。 これがB社から仕入れたものであ る確率を求め 393 2章 9 条件付き確率 る る る る。 立つ。 である である m-1) 倍数で である 1, 2) ったと 灼数は, あるな を満 には, ①へ。 14234 n進 という。

回答募集中 回答数: 0
数学 高校生

A→Pまでの場合分けについて教えてください🙇🏻‍♀️‪‪

り! 4連勝した が決まる。 クゲーム目に 20 のどちら ◯加法定 コーバ 重要 例題 48 平面上の点の移動と反復試行 右の図のように,東西に4本,南北に4本の道路が ある。地点Aから出発した人が最短の道順を通っ て地点Bへ向かう。このとき,途中で地点Pを通る 確率を求めよ。ただし,各交差点で,東に行くか, 北に行くかは等確率とし,一方しか行けないときは 確率1でその方向に行くものとする。 CHART O SOLUTION 最短経路 道順によって確率が異なる A→P→Bの経路の総数 A→Bの経路の総数 4C3X1 6C3 これは,どの最短の道順も同様に確からしい場合の確率で, 本間は道順によって確率が異なる。 例えば, 111 1 22 22 求める確率を A↑ →→→P↑↑B の確率は 1回目の当 A→→→↑P↑↑B の確率は 解答 右の図のように,地点 C, C', P'をと る。 P を通る道順には次の2つの場合 があり,これらは互いに排反である。 [1] 道順A→C→C→P→Bの場合 この確率は 1/2x1/x/1/2×1×1×1=1/28 [2] 道順A→P'→P→Bの場合 この確率は sc (12/2(1/2)×1/1×1×1=1/16 3 1: 3C 5 よって、求める確率は 1/3+1/6=1 8 から, 1 1 1 22 2 8 よって, P を通る道順を, 通る点で分けて確率を計算する。 3 ·1·1: ・・1・1・1= 1 16 1 C' B P P C PRACTICE・・・・ 48 ③ 右の図のように、東西に4本、南北に5本の道路がある。地 点Aから出発した人が最短の道順を通って地点Bへ向かう。 このとき,途中で地点Pを通る確率を求めよ。ただし、各交 差点で、東に行くか、北に行くかは等確率とし,一方しか行 けないときは確率1でその方向に行くものとする。 とするのは誤り! A | A A 確率の加法定理。 B P P | 基本 27,46 ◆C→Pは1通りの道順 であることに注意。 [1] →→→↑↑↑と進む。 [2] ○○○→↑↑と進む。 ○には2個と↑1個 が入る。 北 P B 北

回答募集中 回答数: 0
数学 高校生

マーカーを引いた部分の図の意味が分かりません💦 教えてください🙏

X コ 5 確率と漸化式 (1) 日本 例題 37 00000 される回数が奇数である確率pn をnの式で表せ。 1,2,3,4,5,6,7,8の数字が書かれた8枚のカードの中から1枚取り出し てもとに戻すことをn回行う。 このn回の試行で、数字8のカードが取り出 [産業医大 ] 基本30 CHART & SOLUTION 確率と漸化式LUTIONE 回目と(n+1) 回目に着目 確率が であるから, 偶数である確率は 1-pn 回の試行で, 数字 8 のカードが取り出される回数が奇数である (n+1)回の試行でpn+1 を求めるには, 次の2つの場合を考える。 7回の試行で奇数回で,(n+1)回目に8以外のカードを取り出す n回の試行で偶数回で,(n+1)回目に8のカードを取り出す 変形すると また (n+1)回の試行で8のカードが奇数回取り出されるのは, [1] n回の試行で8のカードが奇数回取り出され, (n+1) 回目に8のカードが取り出されない [2] n回の試行で8のカードが偶数回取り出され, (n+1) 回目に 8 のカードが取り出される のいずれかであり,[1], [2] は互いに排反であるから Pn+1=pn/1+(1-pn)・・ = 7 3 8 4 Pnt Pn+17 したがって 3 -12--³-(pm-12) pn Pi 11/27 - 12/17 - 31/12/1 8 Pn 3 n-1 3/3 84 n 1 1/3 p=²2 - 1 (3³) - (¹-(²) pn 24 S 8² よって、数列{ba-1/2 は初項 - 123 公比 1/23の等比数列で あるから -4-4-4/124 MOITUIG 8 回目 Pn 1-pn × 7 (n+1)回目 8 P+1 x. 8 inf. ① 確率の加法定理 事象A, Bが互いに排反 (A∩B=Ø) のとき P(AUB)=P(A)+P(B) ② 独立な試行 STで, Sでは事象A, T では 事象Bが起こる事象をC とすると P(C)=P(A)P(B) 3 a=a+₁ を解くと a=²1/22 は, 1枚目のカード が8の確率であるから p=1/ 405 1章 化式

回答募集中 回答数: 0
数学 高校生

この問題の最後のところで、y=xに関して対称だから cos2分のπ−θ=sinθ、、、 となるのがなぜかよくわかりません 教えてください!お願いします🙇‍♂️🙇‍♂️

66 加法定理 (1) 一般角に対して sine, cose の定義を述べよ (2) (1) で述べた定義にもとづき,一般角α, βに対して、 sin(a+β)=sina cos β + cos asinβ os (a+β)=cosacos β-sinasin / COS を証明せよ. 精講 (1) Oを始点とする動径を考えます. 0からの距離がrで始線とのなす 角が0の動径上の点Pの座標を(x,y) とする. Pにより決まる値 y = sine), (=cos0) はの値,すなわちPの位置とは無関係に0のみ で決まる値であることを主張することが大切です. 1つの動径上に異なる点A, A' をとりこの2 点からx軸上に下ろした垂線の足をそれぞれH, H'とすると より △OAH SOA'H' AH_A'H' = OA OA' OH OH' OA OA' IC x 15 50 r r G □ H H' 18 です. A の座標を(x, y), r=OA とするとそ れぞれの値は であり,これは A'の位置に無関係に決まる値で す。 (2) (1) で述べた定義にもとづき証明せよ。」と なっているところに注意を払います (1) で初めて sin 0, cos が定義されたのですから, sin'0+cos20=1 解法のプロセス (1) 0 を始点とする動径上の点 P(x, y) に対して yI r² r 732 1=50ARS yI , (r=OP) r はPの位置に無関係に決まる 値である 7502 1750 などの証明の途中で必要とされる定理はすべて証 明してから使うべきです. 147 (東大) X 回転しても距離は不変 (nie Reo) Curle 義可能である (2) A(cosa, sina), B(cos β, sin β) をとる 凸 A, B を原点のまわりに -β 回転させ, A',B'とする 凸 ↓ の関数として定 ↓ AB=A'B'

回答募集中 回答数: 0