数学
高校生

A→Pまでの場合分けについて教えてください🙇🏻‍♀️‪‪

り! 4連勝した が決まる。 クゲーム目に 20 のどちら ◯加法定 コーバ 重要 例題 48 平面上の点の移動と反復試行 右の図のように,東西に4本,南北に4本の道路が ある。地点Aから出発した人が最短の道順を通っ て地点Bへ向かう。このとき,途中で地点Pを通る 確率を求めよ。ただし,各交差点で,東に行くか, 北に行くかは等確率とし,一方しか行けないときは 確率1でその方向に行くものとする。 CHART O SOLUTION 最短経路 道順によって確率が異なる A→P→Bの経路の総数 A→Bの経路の総数 4C3X1 6C3 これは,どの最短の道順も同様に確からしい場合の確率で, 本間は道順によって確率が異なる。 例えば, 111 1 22 22 求める確率を A↑ →→→P↑↑B の確率は 1回目の当 A→→→↑P↑↑B の確率は 解答 右の図のように,地点 C, C', P'をと る。 P を通る道順には次の2つの場合 があり,これらは互いに排反である。 [1] 道順A→C→C→P→Bの場合 この確率は 1/2x1/x/1/2×1×1×1=1/28 [2] 道順A→P'→P→Bの場合 この確率は sc (12/2(1/2)×1/1×1×1=1/16 3 1: 3C 5 よって、求める確率は 1/3+1/6=1 8 から, 1 1 1 22 2 8 よって, P を通る道順を, 通る点で分けて確率を計算する。 3 ·1·1: ・・1・1・1= 1 16 1 C' B P P C PRACTICE・・・・ 48 ③ 右の図のように、東西に4本、南北に5本の道路がある。地 点Aから出発した人が最短の道順を通って地点Bへ向かう。 このとき,途中で地点Pを通る確率を求めよ。ただし、各交 差点で、東に行くか、北に行くかは等確率とし,一方しか行 けないときは確率1でその方向に行くものとする。 とするのは誤り! A | A A 確率の加法定理。 B P P | 基本 27,46 ◆C→Pは1通りの道順 であることに注意。 [1] →→→↑↑↑と進む。 [2] ○○○→↑↑と進む。 ○には2個と↑1個 が入る。 北 P B 北
FR P A→ なぜこの4つで場合分け しないのか

回答

まだ回答がありません。

疑問は解決しましたか?