学年

教科

質問の種類

情報:IT 高校生

情報:高3 [ウ]の部分がなぜ③になるのか分かりません。 iが 1〜kazu-1 になるから jは 0〜kazu-2 までは考えられたのですが、ここから kazu-2 が kazu-1-i になるのはなぜでしょうか、、教えてください🙇🏻

次の生徒 (S) と先生 (T) の会話文を読み, 空欄 ア 解答群のうちから一つずつ選べ。 キ に入れるのに最も適当なものを、後の SAG (A) (6) T:データを昇順または降順に並べ替えるアルゴリズムのことをソートといいます。まずはじめに、バブルソー トというアルゴリズムを考えてみましょう。バブルソートは、配列の中の隣り合うデータの大小を比較し交 換を繰り返す方法です。 図1は、10個の要素を持つ配列 Data に対してバブルソートを行う場合の流れを 表しています。 グラムの4258 まず、配列の先頭とその次の要素を比較し,左の方が大きければ右と交換する。これを一つずつずらしなが ら配列の最後尾まで繰り返していき、最後尾まで繰り返したら1周目の比較が終了します。 S: つまり, 1周目の比較がすべて終了した段階で、配列の最後尾にはア | が入っているのですね。 T:その通りです。 2周目は、配列のイ を除いて1周目と同じように比較していきます。 これを繰り返 して,最後には配列が並び変わっているという具合ですね。図2はバブルソートのプログラムを表してい ます。 その通りです (SI) し 配列 Data 77 52 89 48 97 3 18 62 33 29 1周目/ 1回目の比較 が配列の中 77 52 89 48 97 3 18 62 33 29 交換する 1周目/ 2回目の比較 52 77 89 48 97 3 18 62 33 29 交換しない 4357 1周目/3回目の比較 52 77 89 48 97 交換する 3 18 62 33 29 図1 配列 Data に対するバブルソートの流れ 国の (1) (2) (3) (4) (5) (6)b Data = [77,5289,48,973 18,62,33,291 kazu= 要素数 (Data) JRS pin iを1からkazu-1まで1ずつ増やしながら繰り返す: inshid jを0から ウ まで1ずつ増やしながら繰り返す: もしData[j] > Data [j + 1] ならば: hokan エ Data[j] ① <[abia] ada rabid k == [abis) stad 0000 Data(+11 Anda > (7) (8) (7) Data[j + 1] = hokan 図2 バブルソートのプログラム (hidaes mig) S:図2のプログラムだと, もし仮に最初からデータが昇順に並んでいても, 配列 Data の場合と同じ回数だけ 比較を繰り返さないといけないですよね? T:いいところに気が付きましたね。 最初から昇順に整列された配列をバブルソートすると、交換回数は オ だけど比較回数は ので効率が悪いです。 それでは, データの整列が完了した段階で繰り返 しを抜けるように図1のプログラムを修正してみましょう。 まず, 変数 koukan を用意して初期化してお きます(図3の (3) 行目)。 次に, 交換が発生した場合, 変数 koukan に 「1」 を代入するようにしましょ (図3の (10) 行目)。 さて、ここで図4のプログラムを,図3のプログラムのどこに挿入すればいいか 分かりますか? S:繰り返しが1周終わるごとに変数 koukan の値を確認する必要がありますから、 T: 正解です! よくできました。 キ だと思います。 98 第3章 コンピュータとプログラミング もし kouk

回答募集中 回答数: 0
数学 高校生

この問題の1番について、 a+5、a +3を2つの自然数 を用いて表していると思うのですが、なぜ文字は自然数 K のみだけ、とかじゃだめなんでしょうか?

例題 108 倍数 互いに素に関する証明 今は自然数とする。 α+5は4の倍数であり, α+3は6の倍数であると α+9は12の倍数であることを証明せよ。 自然数αに対し, a と α+1は互いに素であることを証明せよ。 CHART & SOLUTION 倍数である, 互いに素であることの証明 p.426 427 基本事項 1.5 を自然数として α+5=4m, a+3=6nと表される。そして、「αの倍数かつ の倍数ならば ともの最小公倍数の倍数」であることを利用する。 また、aとbが互いに素のとき 「akが6の倍数ならば、kはもの倍数」であることを 利用してもよい ( 参照)。 (2) 互いに素である 最大公約数が1 最大公約数をg とおいて,g=1であることを証明すればよい。 自然数 A,Bについて AB=1 A=B=1 を利用する。 解答 なぜ 同じ買だめ? 経と同じ異だめ? (1)+5,α+3 は,自然数 m n を用いて a+5=4m, a+3=6n と表される。 a+9=(a+5)+4=4m+4=4(m+1) ① a+9=(a+3)+6=6n+6=6(n+1) ② よって、 ① より α+9 は4の倍数であり, ② よりα+9 は 6 の倍数でもある。 したがって, α+9は4と6の最小公倍数12の倍数である Tisan's 割る数が 4章 互いにか13 素数とは 別解 (1) ① ② から 4(m+1)=6(n+1) すなわち 2(m+1=3(n+1) 2と3は広いに素である から m+1は3の倍数 である。 よって m+1=3k(kは自然数) と表される。ゆえに a+9=4(m+1) 数と倍数

回答募集中 回答数: 0
数学 高校生

ヵが分かりません。 1枚目に記載してる写真を見て欲しいのですが、そこにシャーペンで書いてある①??と②??を教えて欲しいです。 なぜ成り立つのか分かりません

① 異なる素数 p q r を用いて 以上より、nが最大となるのはn=12のときであ り, n=12となるのは (i) より 23x32=72 25x3 = 96 (Ⅲ)より 22×3×5=60 22×3×7=84 2×32×5=90 であるから,全部で5個ある。 第5問 (1) APC は, △APC を点Cのまわりに時計回り に60° だけ回転移動した三角形であるから したがって AA'P'C=AAPC AP = A'P' B C (2)時計回りに回転移動する角が 60°のとき. △ACAは正三角形となるから, AA' = AC は成 り立つ。しかし、時計回りに回転移動する角が 60° でないときには,AA'ACは成り立たないこと がある。 ①④ 時計回りに回転移動する角の大きさによら ず△APC APC であるから, AC = A'C, CP=CPは成り立つ。 ②③時計回りに回転移動する角が60°のときに も, AP = AP', APPP'は成り立たないことが ある。 A'D' LAB であるから、APP ABPPは合同な正三角形 である。 よって ∠APB= ∠CQD=60°+60° = 120° ② <BPP=60° より ∠APP=60°であるから AP = BP=CQ=DQ より =1/AB = 4√3 3 1 sin 60° ? PQ=4-2BP cos60°=4- AP + BP + PQ + CQ + DQ 4√3 -4 +4 - 4/3 3 =4+4√3 A 4√3 CP = CP ② ② および P'CP = 60° より, △PCPは正三角形 であるから CP = PP' ③ よって、 ① ③より AP + BP + CP = A'P′ + BP + PP′ ④ A' P ⑤ 時計回りに回転移動する角が 60°のとき, △PCPは正三角形となるから, CP = PP'は成り 立つ。 しかし、時計回りに回転移動する角が60°で ないときには, CP = PP' は成り立たないことがあ る。 ➡0, ⑤ (3) 次の図のように, ABP を点Bのまわりに反 時計回りに 60°回転移動した三角形を A'BP/ △DQC を点Cのまわりに時計回りに 60°回転移動 した三角形を DQO とする。 P P A' B B -C A' 点Pの位置が変化すると,それに応じて点P'の 位置も変化するが, 点Bと点 A' の位置は変化し ない。 B D' よって, 2点P, P' が直線 A'B 上にあることが あれば、そのときに AP + BP + CPは最小となる。 ③ △PCPは正三角形であるから, 4点 A', P', P, Bが一直線上にあるとき ∠BPC = 180°-∠P'PC = 120° ④ ここで, △ABC は鋭角三角形であり, 内角はすべ 120° よりも小さい。 したがって、点Pは確かに △ABC の内部にある。 (1)と同様に考えて AP + BP + PQ + CQ + DQ =AP + PP + PQ + QQ + QD] であるから, 4点 P', P, Q, Q' が直線 A'D'上に あるときに AP + BP + PQ + CQ + DQ は最小と なる。 △PPB, QCQ' は正三角形であるから, 6点 A', P', P, Q, Q', D' が一直線上にあるとき AAA'BADD'C である。 さらに,正方形と正三角形の対称性より -③-9-

回答募集中 回答数: 0
数学 高校生

なぜ、直線Mにおいての任意の複素数をZと表すことができるんですか??直線Lの方でもZが使われてて違うものなのになぜ同じ文字でおけるのか教えて欲しいです!!

B(β) z-a z-a よって, 7-B Y-B. Think 例題 C2.36 垂線の方程式,垂心 **** 複素数平面において, 単位円周上に異なる3点A(a),B(β),C(y) を 定める. ことを証 (1) 点Aから直線 BC に垂線lを引くとき, この垂線ℓ上の任意の点 D1S P(z)について、z-a=By (2-2) が成り立つことを証明せよ。 (2) △ABCの垂心を α, β, y で表せ. 考え方 (1) 点A(a),B(3), C(y), P(z) について,|a|=|β|=|y|=1 解答 APLBC または z=a z-a (山形大改) (2) 点Bから直線CAに垂線を引くとき,この垂線上の任意の点Q (ω) について (1) 1-1が純虚数または01-8=-1 と同様の式が成り立つ垂心は z=w となる複素数である. (1) Pは垂線上の点なので, AP⊥BC または z=α より z-a -は純虚数または 0 Y-B (A(α)→0(0) とな [B(B) → 0(0) るように平行移動す Pzると,P,Cは、それ A(α)ぞれ [P(z)→P (z-a) IC(y)→C^(-3) YA P 1. 0 -1 1 上にある であるから, C(r)-1=0 に移る. z-a z-a A 7-B Y-B 両辺に y-βを掛けて, P'(z-a) z-α=-(y-β) (28) Ala ・① ここで, 3点A(a),B(β), C(y) は単位円周上の点よ り |a|=|β|=|y|=1 C'(r-B) よって, zキαのと したがって,|a|=||=|y|=1 であるから, OP OC を aa=βB=yy=1より, 0のまわりに今だ a= B= y= .....2 a B' A (0-8)=0 け回転して実数倍 したベクトルより ②①に代入すると, Z z-a=-(y-β) =BY (1) 1 1α18 8 2- a a =(β-y)- B-Y B BY よって 00: Z ・③ となり、題意は示された「円 z-a=k cos a=k(cos +isin(7-8) RY=ki(7-8) は0でない実数) よって zaki (純虚数 または0) CES ③は直線lの方程式 (1+1を複素数で表現した 2

回答募集中 回答数: 0