学年

教科

質問の種類

数学 高校生

(2)がよく分からないんですが教えてください!🙇

(2) 次の問題について考えよう。 △ABCにおいて, BC=√2, ∠ABC=60° ∠ACB=45° とする。 辺ABの長さ, および sin <BAC の値を求めよ。 セ (1) 太郎さんは、この問題を解くために、次の構想を立てた。 c0760- 太郎さんの構想 ∠ABC, ∠ACBの大きさから,それぞれの対辺である辺 AC, ABの長さ の比の値を求める。 AC-AB+B=ABICBCo5 ABC AC AB COS ∠ABC= セである。 また, sin∠ABC= sin∠ACB= タであるから, 正弦定理により が成り立つ。 COS ∠ABC= である。 よって, AB=x とおくと, 余弦定理により チ チ 01/1/12 ① 6 2 ツ √6 ② 8:1/260 = ⑦ イディオム ト √2 A COS CABC- の解答群 (同じものを繰り返し選んでもよい。) 13²+C²-213C (2 2 x COSABC ²42 √6 2 - 28 - 1². B²+C² - 2Bc cosa -√2 (8 /6 3 √3 (4) 2 ⑨ /6 3 (数学Ⅰ・数学A 第1問は次ページに続く。) △ABH に着目すると AH= AH= (2) 花子さんは、この問題を解くために、次の構想を立てた 花子さんの構想 BCの長さを辺AB, ACの長さを用いて表す。 点Aから辺BCに引いた垂線と辺BCの交点をHとして,線分 AH 辺 が成り立つ。 ナ AC AB である。 また, BC=BH+CH により ⑤ BC= 2 AC であるから √3 2 ★ - AB= ネ である。 また チ ヌ AB+ ① 6 /6 sin ∠BAC= ネ ② 2 2 |AC ナム AB であり、△ACH に着目すると であることがわかる。 ただし, ヒト+ no--no UT へ3 一般に、三角方程式や後で学ぶ三角比を含む不等式を解くには、 のを利用する。 を用いた三角比の定義は次のようなものであった の解答群(同じものを繰り返し選んでもよい。) 16 2 ビ sino-y.cosx.tan02 (090°) (p.1671③) 象 180 のとき がって, A1, 0) 座標が... (3) 太郎さんの構想または花子さんの構想を用いることにより フェ - 29 - AH-AB 7 (3 数学Ⅰ・数学A 8 フ AC √6 3 AB √2 2 9 とする。 B ・AC √√3 5 OSKI (1) この2点存在する 半径1の円周上 なる点は、図の2 求めるのは、∠A 0-307 (2) 半径1の半円 となる 求めるのは、 4:1919 -15c51% 0- (3) 直線x=1 る点をTとす この半円の共 求める0は in 解答・ (1) (2) co (3) ta PRAC 20 (4 ん、花子さん を正しく理

回答募集中 回答数: 0
数学 高校生

20の(1)の角BACを求めるところで質問です 解答とはちょっと違くて β-α/γ-α=√2/2(cos5/4π+isin5/4π)となったのですが極形式のθ回転は右回りを指しているのでこのようになりますか? そういうことなら問題を解く時、点の位置をある程度把握する必要... 続きを読む

58 基本例題 30 線分のなす角、平行・垂直条件 複素数平面上の3点A(α), B(B), C(y) について (1) α=1+2i,β=-2+4i, y=2-ai とする。 このとき, 次のものを (ア) a=3のとき, ∠BAC の大きさと △ABCの面積 (イ) α=16のとき, CBA の大きさ (2) α=-1-i, β=i, y=b-2i (b は実数の定数) とする。 (ア) 3 点A,B,Cが一直線上にあるように, bの値を定めよ。 (イ)2 直線 AB, AC が垂直であるように, 6の値を定めよ。 指針 ∠BACの偏角 Bay = arg B-α Y-α (1)(ア) (1) B-a (ア) △ABCの面積は 1/12AB・ACsin <BAC また であるから, a-B Y-B = r-a β-a r-a に注目する。 = を計算し、 極形式で表す。 (2) pp.41 の基本事項 ③ ② ③ が適用できるように,まずy-a B-a r-a が実数 (∠BAC = 0 または ² ) B-α 解答 (1) (ア) α=3のとき, y=2-3i であるから Y-α 2-3i-(1+2i) B-a -2+4i-(1+2i) よって, ∠BACの大きさは r-a が純虚数 ∠BAC= B-a BAC=4) の計算で出てくる B-α, r-αの値を使うとよい。 (1-5i)(-3-2i) (-3+2i)(-3-2i) = √2 (cos+isin) CHART 線分のなす角、直線の平行・垂直偏角 ∠Bay=arg- 1-5i -3+2i =-1+i 3 △ABC=12AB・ACsin <BAC -—-—- √ √(-3)² + 2² ₁/18 11 12 B(B) p.41 3 0 A(a) ここで, AB=B-al, AC ∠Bay A(a) C(y) を計算し Big r-a B-a a-B r-B a=16 のとき, -ba 分母の実数化。 偏角を調べる。 = よって, ∠CBA y-a (b-2i)- B-a as litte i-(- (b+1-i (1+2i) 3点A, B, C となることであ よって イ) 2直線AB, 検討 ベクトルの となるように,bの値を定復素数平面上の点 いて解くこともで 1) (1) A(1, 2), B. 1+2i-( 2-16i-C = ここでは,偏角 (3-2i)(- 4(1-5i)0 習 00 √ 8 COS- 数となることで b= よって b=- CO (ア)についても 2) A(-1, -1) (ア)kを実数 よって (イ) AB・AC= 0≤ZCBAS 複素数平 (1)a= (2) α= 求め

回答募集中 回答数: 0