学年

教科

質問の種類

物理 高校生

37のスについて 解答でキルヒホッフ第2の法則を用いていますが、どこの閉回路についてなのでしょうか?

さの方向(Bの方向とPの運動方向の両方に垂直な方向) に大きさがの 端には起電力が生じる。 このとき, Pの内部の電場の大きさは であり、 (イ) 力を受ける。 その結果, Pの片側は電子が過剰になって負に帯電しPの画 この電場から電子が受ける力の大きさはエ)である。 電場から電子が受ける力 と電子に働く (イ) 力はつりあうと考えてよいので、V=(オ)が得られる。 (2) 次にSが閉じている場合を考える。 Pの支えをはずすと同時に, P, Q に初速度 での間, PとQは速さ uo の等速運動を行った。 このときQが1秒間に失う位置エネ uo を与えるようにQを鉛直方向に引きおろしたところ, Pがレールの端に達するま 秒間にRで発生する熱量は() となる。 等速運動では, P, Qの運動エネルギー ルギーは (カ) である。 また. この運動中, R の両端の電位差は (キ)であり,1 (秋田大) が変化しないことを考慮すると, uo は (ケ) となることがわかる。 212 図に示すように電圧e [V] の交 電源電圧 E〔V〕 の直流電源E, 抵抗値がそれぞれ R [Ω], R2 〔9〕, a R3 [Ω] の抵抗 Rs, R2, R3, 電気容量 C [F] E のコンデンサー C. 鉄心に巻かれたコイル (37 鉄心 R₁ Sis INT R₂ S₁ S₂ S, コイル2 12.0 コイル1 1とコイル2およびスイッチ S1,S2, S3, S, で構成される回路がある。ここで, コイル 1, コイル2および電源の抵抗は考えな いものとする。また,コイル1の自己インダクタンスをム [H], コイル1とコイル 2 の相互インダクタンスを M [H] (M> 0) とする。最初, コンデンサーには電荷がな く,すべてのスイッチは開いた状態にあるとして,以下の文章中の を埋めよ。 なお,図中で電圧 e, E, v1, v2 と電流 is, i2, is の正方向はそれぞれに付けている矢印 により定義する。電圧の矢印は矢の根元に対する矢の先端の電圧を表し,例えば図の 電圧eは, a点の電位がb点の電位より高いと正である。 電流は, 矢印の方向に正電 荷が移動している場合を正とする。 (1) スイッチ S と S3 だけを同時に閉じた。 このとき抵抗R に流れる電流は, [ア][A] である。コンデンサーのスイッチ S3側の極板の電荷をqとすると, q は (イ) [C] である。 gが微小時間 ⊿t[s] の間に 4g 〔C〕 だけ変化するとすれば、 コンデンサーに流れる電流はこれらを用いて,(ウ) 〔A〕 と表される。 交流電源 の電圧が, e=Eosinwt で与えられるときは (エ) 〔A〕 と求められる。ただし, E〔V〕 およびω 〔rad/s] は定数, t [s] は時間である。 交流電圧 Eosinwt の実効値 は (オ) [V] , 周波数が60 [Hz] の電源の場合, ω は (カ) [rad/s] となる。 (2) 次に, スイッチ S と S3 を開いてからスイッチ S2とS を同時に閉じたところ、 コイルに流れる電流 is は徐々に増加し, しばらくすると一定の値になった。 なお, コイル2の端子c, d には何も接続していない。 電流が微小時間 4t 〔s] の間に ⊿is 〔A〕 だけ変化したとき, コイル1の両端に生じる電圧 vi は, (キ) [V] で, 図 の電圧v2 は (ク) 〔V〕 である。 このように, コイル1によってコイル2に電圧が (A) で, 電流はえを用いると (サ) [A] である。 また、このときの電圧 2 は 生じる現象は (ケ) とよばれる。 電流が一定の定常状態では、電流は [V] である。 is 04 (A) 11:28, 10, 12(V), BE P その後, スイッチ S は閉じたままスイッチ S2を開いたところ、電流は徐々に 減少した。 この電流の は (セ)[V] である。 (長崎大) 内部抵抗が無視できる電圧E [V] の 直流電源 E, 抵抗値R [Ω] の抵抗 R, 自 己インダクタンスL[H] のコイルL 気容量がC〔F〕 のコンデンサーCからなる図1 (38) の回路について,以下の問いに答えよ。 ただし, 初期状態では、スイッチは中立の位置bにあ コンデンサーは帯電していないものとする。 り、 また, 抵抗に流れる電流 IR 〔A〕 およびコイルに流れる電流 [A] は、図1の矢印の とする。 1 向きを正の向きと (1) 初期状態から, Sをaに接続した直後に, 抵抗に流れる電流 IR [A] を求めよ。 (5) (2) コンデンサーの極板間の電圧V[V] [V] になったときの電流 IR [A] を求めよ。 ・t 175/1 (③) 十分に時間が経ったときの電流 IR [A] を求めよ。 (4) 電流 IR 〔A〕 と時間 t [s] の関係を表すグラフはどれか。 図2の①〜 12 のうちから 正しいものを一つ選べ。 ただし, Sをaに接続したときを t=0 とする。 20 6 t R M W 9 10 0 C. OF 図1 -t LL 8 AM 12 第4章 電気と磁気 図2 (5) 十分に時間が経ったときのコンデンサーにたまっている電気量 Q [C] を求めよ。 (6) 十分に時間が経った後, Scに接続したとき、 コイルに流れる電流と時間 の関係を表すグラフはどれか。 図2の①〜 12 のうちから正しいものを一つ選べ。 た だし,Sをcに接続したときを t=0 とする。 (7) (6)における電流 [A] の最大値を求めよ。 (福井大) 演習問題 213

未解決 回答数: 1
物理 高校生

133 解説お願いします🙇

110 18 交流回路 (3)図2で、電圧の最大値はAの波形が 40V, Bが40 mVであった。 ただし, 図2でBは縦方向に拡大し ている。 電気容量Cの値はどれだけか。 (4) 図1のaとbの間にコイルを接続し、電源の電圧 を調整し (2) と同様な測定を行った。このとき,図 3のような結果が得られた。 ただし, 図3でBは縦 方向に縮小している。 電圧の最大値はAの波形が4 V, Bが10Vであった。 自己インダクタンスLの値 はどれだけか。 (5) 図1のaとbの間にコンデンサーとコイルを直列 に接続した。このときの共振周波数はどれだけか。 (6) 図1のaとbの間に抵抗, コンデンサー, コイル を直列に接続した。 交流電源の周波数を共振周波数 に合わせ、電源の電圧の最大値を10V に調整した。 このときab間に接続した抵抗, コンデンサー, コ イルで消費される電力の時間平均値はそれぞれどれ だけか。 ILA EE 0 0 庄 33. <LC並列回路> 図1のように抵抗値Rの抵抗R, 自己インダクタンスLのコイルL 電気容量CのコンデンサーCと交流電源EおよびスイッチSからなる 回路がある。 コイル内の抵抗は無視できるものとする。 〔A〕 スイッチSをつないでいない場合, cd間に実効値 Veの交流電 圧を与えたところ, ac間の電圧とab間の電圧が等しくなった。 (1) 交流電源の交流電圧の最大値を求めよ。 (2) ac間の電圧の実効値を求めよ。 (3) 交流の周波数を求めよ。 [B] スイッチSをつないだ場合, cd間に周波数fの交流 電圧を与えたところ, bに対するaの電位の瞬時値 Vab は図2のように時間とともに変化した。 (1) コイルLを流れる電流の瞬時値の実効値 を求 めよ。 (2) コンデンサーCを 流れる電流の瞬時値 Icの実効値 Ice を求 7 0 0 Vabt Vo 0 - Vo Ich Icm 0 0.01 - Icm 図2 0.01 図3 (10 大阪教育大 C 図2 0.02 時刻 (s] L 0.02 時刻 [s] b ~ めよ。 (3) Veb の時間変化に um 対するおよびIc 図3 図4 の時間変化をそれぞれ図3および図4に示せ。 ただし, それぞれの電流の最大値を Im および Icm とし, 横軸の目盛りは図2と同じものとせよ。 4 位相差 の何倍か。 (5) 図1の自己インダクタンスLを別の値L'に変えたところ、 抵抗Rに電流が流れなくな った。 L'を求めよ。 〔09 愛媛大改) 134.交流電流とリアクタンス> 図1のような電圧と角周波数を設定できる交流電源を用意した。 AB間に は、 抵抗 コンデンサー, コイルなどを接続する。 交流電源の電圧を VtVasinwt, 抵抗の抵抗値をR, コンデンサーの電気容量を C, コイル の自己インダクタンスをLとして次の各問いに答えよ。 時刻を角周波数とし, 導線の抵抗やコイルの内部抵抗は 無視できるものとする。 作図は, (2)~(4) について角周波数とリアクタンスの図1 交流電源 定性的な関係がわかるように、1つの図(図3) の中に表せ。 なお, nを整数とすると, sin (nat) および cos (nwt) の1周期にわたる時間平均は0である。 (1) AB間に抵抗をつないだとき, 回路に流れた電流はI(t) =Lsinwt であった。 (a) を VoとRで表せ。 (1) (2) (3) (b) 電源のする仕事率 (電力) の, 1周期に わたる時間平均を求めよ。 (2) AB間にコンデンサトをつないだとき, 回路に流れた電流はI(t) = Isin (wt+p2) であった。 (a) を Vo, C, w, 2の値を求めよ。 (b) コンデンサーのリアクタンス X を求め, リアク 1) タンスと角周波数の関係を実線で図示せよ。 ア (c) 電源のする仕事率の, 1周期にわたる時間平均タ を求めよ。 また, その値の物理的意味を述べよ。 18 交流回路 (3) AB間にコイルをつないだとき, 回路に流れた電 流はI(t)=Issin (wt+ps) であった。 ス C 20 offmo 図2 AB間に接続する素子など ((1) ~ (5)) C (5) ofthe 角周波数 α 図3 (a) Is を Vo, L, w で表し, の値を求めよ。 (b) コイルのリアクタンス X を求め, リアクタンスと角周波数の関係を破線で図示せ よ。 発展(4) AB間にコンデンサーとコイルを直列につないだ。 (a) リアクタンスの大きさ|X|と角周波数の関係を太い実線で図示せよ。 (b) リアクタンスの大きさが最小値をとる角周波数 を求めよ。 発展 (5) AB間に抵抗とコンデンサーとコイルを並列につないだとき, 回路に流れた全電流は I(t)=Issin (wt+ds) となった。 Is と tan Φs をそれぞれ Vo, R, C, L, ω のうち必要なも のを使って表せ。 [08 東京医歯大 改) 111 TI

回答募集中 回答数: 0
数学 高校生

分かりません。教えてください!

計算問題の場合は必ず、 公式→数値代入→答えの順番で記入すること。 配点は全て2点 合計52点分 つぎ 問1 次の文章を読み「 内に当てはまる言葉を書き入れなさい。 (1) 時間や温度、面積や容積などのように、大きさだけで表される ① だかい (2) ①に対し、力や速度、磁界のように大きさと ② を持つ蓋を③ ひょうじゅうほう ASD 423225 (3) A=(ab)のような表示方法で表す方法をベクトルの ④ 表示という。 お +422 Asa 315 (4) A=ALΦのような表示方法で、大きさと位相差を表す方法をベクトルの ⑤ 表示という。 という。 (5) 交流回路において抵抗だけの回路は、電流と電圧vの位相差は無い(位相差0)。この状態を⑥という。 あちお (この回路において、抵抗R [Ω]、電圧V[V] と電流I [A]の関係は、I=⑦ で表す。 という。 あられ こうちゅう (7) 交流におけるインダクタンス (コイル)だけの回路において、電流の流れをさまたげる働きを持つものをX=WL=2Lです。この×⑧とい う。なお、この回路において電流は電圧vより位相が="[rad] 40 (8) XL [9] はインダクタンスL [H] と周波数 [Hz] の横に⑩する。 (9) 交流におけるコンデンサだけの回路において電気の流れをさまたげる働きを持つものをXc で表し、次のような式 1 1 @C 271C (10) Xc [2] は、 静電容量C [F] と周波数 † [Hz] の積に 13 で表す。このXを① ]という。この回路において電流は電圧vより位相がゆ=-radlだけ⑩ 2 10 する。 とには進むまたは遅れるのいずれかが入る。また、10分には比または反比例のいずれかが入る。 ② 3 4 8

回答募集中 回答数: 0