学年

教科

質問の種類

数学 高校生

(4)からまったくわかりません... 解説お願いします

Think 例題 153 総合問題 右の図は,生徒20人に行った 整理と分析 301 **** 点で図形の得点が5点である生徒の 人数は2人である. の結果をまとめたものである. 関数 の得点xを横軸に,図形の得点yを 縦軸にとっている.図の中の数値は xyの値の組に対応する人数を表し ている。 数と図形のテスト(ともに10点満点) 10 9 8 1 7 1 11 6 1 11 y 5 121 4 たとえば、関数の得点が7 3 1 22 1 2 2 1 各生徒の得点について, x+y の最大値と, x-yの最大値 を求めよ. 0 01234 5 6 7 8 9 10 X が S 5. (2)図をもとに,次の表を完成させよ.また,各テストの得点の平均値 を求めよ. 点(点) 0 1 2 3 4 5 6 7 8 9 10 2435 10 関数(人) 0002 図形(人) 012335231 (3)(2)の表を使って各テストの標準偏差を求めると, 関数は2.8点 図形は3.6点, 関数と図形の得点の共分散は2.55 であった. 関 数と図形の得点の相関係数の値を四捨五入して小数第2位まで求 めよ.ただし,√7=2.646 とする.A0.80 右の表は、別の5人の生徒 A, B, 5人の生徒 ABCDE C,D,Eに同じ問題のテストを行 った結果である. 5人の関数と図 形の得点の平均値は, それぞれ 20 165 関数の得点 7 4 6 9 4 6 図形の得点 5 4 5 6 5 人の得点の平均値と同じであった.20人にこの5人を加えた合計 25人の生徒に関する関数と図形の得点の相関係数Rの値を小数第 2位まで求めよ. (5)これらのテストの結果について、次の①~③は正しいといえるか、 ① 生徒 25人の得点について、関数と図形の平均値からの散らば り具合は同じである. ② 生徒 20人の関数と図形の得点の正の相関はやや強いが,A~ Eの5人が加わると正の相関は少し弱まる. ③ 生徒 25人の図形の得点が一律に1点上がれば,25人の関数と 図形の得点の相関係数の値はより大きくなる. 第5章

回答募集中 回答数: 0
数学 高校生

なぜ+4,-5をするのでしょうか? 数1です

66 第5章 例題 143 代表値と度数分布表(2) 外 次の表は、生徒 40人の試験の得点 (0以上の整数)の累積度数をまとめ たもので,各生徒の得点は明らかではない。 このとき,次の問いに答えよ。 得点(点) 90以上 80以上 20以上 60以上 50 以上 40以上 30以上 20以上 32 36 度数(人) 0 3 12 26 39 40 (80点以上90点未満をしろの階級として、各層級値に対する度数分 布表を作成せよ ろ +9 +14 +0+4+3+1 (2)(1)で作成した度数分布表における平均値を求めよ. 考え方 (3) データの平均値の最大値と最小値は, 生徒40人の実際の得点の平均値の最大値と最小値を求めよ. 最大 (小) 値: 各データの値が各階級の最大(小) 値をとったときの平均値 解答 (1) 階級値(点) 85 75 65 55 45 35 25 階級値は各階級の両 度数(人) 3 9 14 6 4 3 1 端の平均値である. (2) 平均値は, 40 (85×3+75×9+65×14 +55×6+45×4+35×3+25×1) 2480 = -=62(点) 40 (別解) 仮平均を最頻値 65点とすると,平均値は, 1 65+ (20×3+10×9+0×14 + (−10)×6+(−20)×4 40 120 なる () .01-1.0-01-+(-30)×3+(-40)×1} =65- -=65-3=62(点) 40 (3) 各データの値が各階級の最大値をとるとき,すなわち、各データの値が各 階級の階級値より4点だけ大きい値となるとき,平均値は最大となるから、 平均値の最大値は, 624=66(点) 同様に,各データの値が各階級の階級値より5点だけ小さい値となるとき, 平均値は最小となるから,平均値の最小値は, 62-557(点) 注〉 仮平均は最頻値や中央値に近い数にとることが多い. また, 平均値を実際のデータか ら求めたときと, 度数分布表から求めたときとでは,必ずしも結果は一致しない

解決済み 回答数: 1