学年

教科

質問の種類

物理 高校生

(2) 投げた時に初速度があるのに自由落下として考えていいのはなぜですか? 壁に衝突前後で鉛直方向の速さが変化しないというのはわかるのですが、それでも投げた時に初速度があるから鉛直投げ下ろしで考えないといけないんじゃないんですか? 解説をお願いします🙇‍♀️

第1章力学 問題 24 固定面との衝突 図のように,質量m 〔kg) の小球を水平な床の鉛直 上方h 〔m〕の位置から, ([m) 離れたなめらかで鉛直な 壁に向かって、壁に垂直な水平方向に初速度v 〔m/s) で投げたところ, 小球は壁に当たってはね返り, 床に 落下した。 小球と壁との間の反発係数(はね返り係数) をeとし,重力加速度の大きさをg〔m/s2) とする。 (I) 小球を投げてから壁に当たるまでの時間はいくら か。 小球を投げてから落下点に到達するまでの時間は いくらか。 (3) 壁から落下点までの水平距離はいくらか。 物理 衝突によって鉛直方向 (壁に平行な方向) の速度成分は変化しないので 鉛 直方向では壁に当たる前と後に分ける必要はない。 求める時間をた〔s〕とす ると,距離〔m〕の自由落下と考えて、 1 h = 29t22 よって,t= 2h -[s] g [s]である。この (3) 壁に当たってから落下点に到達するまでの時間は 間 水平方向には右向きに速度 ev [m/s] の等速度運動をするので、 求める 水平距離 x[m] は, 2h x=ev(tz-t) = ev [[m] wg v (4) 小球が壁から受けた力積は, 垂直抗力によるものである。 (4) 小球が壁から受けた力積の大きさはいくらか。 Pointe <愛知工業大 〉 物体が受けた力積の求め方には,次の2つがある。 (i) (物体が受けた力) × (力を受けた時間) (解説) (I) 小球を投げてから壁に当たるまでの間, 水平方向には左向 きに速度v [m/s] の等速度運動をするので,求める時間を 物体が受けた力積 t] 〔s] とすると, 01 = vt₁ よって, =- (s) ひ (2) 壁に衝突することで, 速度がどのように変化するか を考えよう。 壁はなめらかなので, 壁と接触している 間に壁から受ける力は、垂直抗力のみである。 そのた め,壁に平行な方向の速度成分 (右図のvy) は変化せず, 壁に垂直な方向の速度成分 (右図のvx) は変化する。 反 発係数をeとすると,次のようにまとめられる。 vx なめらかな壁 Vy → 垂直抗力 evx (ii) 受けた力の方向の物体の運動量変化 この問題では、壁と接触している時間がわからないので, (i)では求められ ない。 (ii) 運動量変化で求めよう。 水平右向きを正として、水平方向の運動量 ま 変化より 内系材(小球が壁から受けた力積)= m.ev-m(-v) 運動量変化 =(1+e)mv〔N・s〕 注 反発係数eの値の範囲は0≦e≦1であり, e=1の衝突を弾性衝突(または完全 弾性衝突), 0e<1の衝突を非弾性衝突, e=0の衝突を完全非弾性衝突という。 toder Vy Point なめらかな壁に反発係数eの衝突をするとき, ・壁に平行な方向 壁に垂直な方向 52 52 速度成分は変化しない。 ・速度成分は向きが逆に,大きさが倍になる。 (1) (8) (2) 2 (s) 2h 12h (3) ev Ng [[m] ひ g (4)(1+e)mv〔N's〕 5. 力積と運動量

解決済み 回答数: 1
物理 高校生

(カ)がわかりません💦 教えてくださいお願いします🙇

必解 39. 〈小球と斜面との衝突〉 <! 次のアからサ に適当な式を入れ, 問いに答えよ。 ただ し、重力加速度の大きさをgとし、空気抵抗はないものとする。 図のように質量mの小球が自由落下し、傾き角0 質量 Ka (0° 8 <45°) のなめらかな斜面に上から衝突した。 衝突直前の 小球の速さを”とする。 衝突の際, 斜面は動かなかった。 〔A〕 衝突直前の小球の速度の斜面に平行な成分の大きさを0を用いて表すとア であり、斜面に垂直な成分の大きさはイである。 衝突後,小球は速さで水平に飛んだ。 衝突の前後で小球の速度の斜面に平行な成分 の大きさは変化しないが,このことをv, 0, 0 を用いて式で表すとウとなる。この 関係からをひとを用いて表すとエとなる。また。 衝突直後の速度の斜面に垂 直な成分の大きさは,と0を用いて表すとオとなる。この成分の大きさは斜面と 小球の反発係数をeとすると,e, v, 9を用いてカと表される。(オ), (カ)が等しいこと から”をe, v,0を用いて表すとキとなる。 以上から(エ),(キ)が等しいとおくことに より,反発係数eは0を用いてと表されることがわかる。 (1)この衝突で斜面が小球に与えた力積の大きさをm, v,0を用いて表せ。 〔B〕 最初の衝突をした時刻を0として、時刻に小球は斜面と点Pで2回目の衝突をした。 最初の衝突で水平に速さではねかえった小球が、時間を経過する間に進む水平方向の 距離 Zx,鉛直下向きに進む距離lyをg, 0, の中から必要なものを用いて表すと ケムコとなる。2=t =tan の関係が成りたっているので、(エ),(ケ), (コ)の結 lx 果を使ってをg, v0 を用いて表すとサとなる。 (2) 図のように, 点Pで衝突する直前の小球の速度の向きが水平となす角をとしたとき, tanaを0を用いて表せ。

回答募集中 回答数: 0
物理 高校生

x方向は力積なしの意味がよく分かりません。 教えてください🙇🏻‍♀️

チェック問題 2 固定面との斜衝突 質量mの小球を自由落下させ,傾き 30° のなめらかな斜面に衝突させたところ, 20 水平にはね返った。 衝突直前の速さを v として,次の量を,( )内を用いて表せ。 * (1) 衝突直後の速さ” (vo) * (2) この衝突の反発係数e (3) 斜面から小球が受けた力積の大きさI(m,vo) 解説 (1) なぜそのように分けるので すか? 500 m (2) 方向のみに注目して,e= どうしたらよいのか, はじめの一歩がわかり ません。 30° まずは,斜面と平行成分 (3軸), 垂直成分 (y 軸) に速度を分解して, 前中後の図をかくよ。 001 y SOD CIT y軸と逆向き ① を代入して、Iについて解くと, I = Vo それは、図のように, x 軸方向には全く 力積を受けない(重力の力積は衝突時間 が短く無視できる) から, 運動量が保存す ることと,y 軸方向は衝突面と垂直だから, 反発係数eの式が使えるからだよ。 x 方向のみに注目して、《運動量保存則》(p.139)より, 001 mvo sin 30°= mv cos 30° 09.00 1 (m) coll V₁ (m) 2 -mvo √3 標準 6分 Vo ① ( ① より ) 30% V よって、 v= v sin 30° 1 Vo cos 30° 3 (3) 方向のみに注目して,〈力積と運動量の関係》(p.137) より, mvo cos 30°+ I = musin 30° x軸方向は 力積なし 30° 30% 457- x

解決済み 回答数: 1
物理 高校生

この問題でy軸方向に力積があるのもよくわかんないし、X軸に力積がないのもよく分かりません、、 詳しく教えてください!!

チェック問題 2 固定 質量mの小球を自由落下させ、傾き30° のなめらかな斜面に衝突させたところ, 水平にはね返った。衝突直前の速さをひ として、次の量を,( )内を用いて表せ。 (1) 衝突直後の速さひ (vo) 場 x (2) この衝突の反発係数e (3)斜面から小球が受けた力積の大きさⅠ(m,vo) 解説(1) なぜそのように分けるので すか? mv, sin 30°: まずは,斜面と平行成分 (x 軸), 垂直成分 (y 軸) に速度を分解して、 @‚ Ð, ®nºħħ<£o 500153 y dos どうしたらよいのか, はじめの一歩がわかり てません。 (②2)方向のみに注目して, 軸と逆向き それは,図のように, x 軸方向には全く 力積を受けない(重力の力積は衝突時間 が短く無視できる)から, 運動量が保存す ることと,y 軸方向は衝突面と垂直だから, 反発係数eの式が使えるからだよ。 æ方向のみに注目して、《運動量保存則》(p.139)より, ・① 30° = mv cos 30° よって, v= -Vo e = = 1 /3 V (m) ① を代入して,Iについて解くと, I = - 2 √√3 Vo Vo mvo m ひsin 30° 1 Vo cos 30° 3 (3) 方向のみに注目して、 《力積と運動量の関係〉 (p.137) より , mucos 30°+ I = musin 30° (①より) 答 30% CC 軸方向は 力積なし 30° 30% XC

未解決 回答数: 0