学年

教科

質問の種類

数学 高校生

aとxを入れ替えずにやるとf(x)の値が異なってしまいます(2枚目の写真です)。 なぜ入れ替えて計算しないといけないんですか?そのままやったら間違ってる理由も教えて欲しいです。

380 基本例題 242 定積分と微分法 次の等式を満たす関数 f(x) および定数a の値を求めよ。 00000 (1)f(t)dt=x²-3x-4 71(2) (2) f(t)dt=x³-3x p.374 基本事項 d dx |指針 a が定数のとき、Sf(t)dt はxの関数である。その導関数について,F(8)= とするとSoftata[F(t)]-1(F(x)-F(a))=F(x)=f(x) d dx 定数 F (a) は xで微分すると0 であるから,off(t)dt=f(x)が成り立つ。 Ja d また,等式でx=a とおくと, Sof(t) dt=0 であるから,左辺は0になる。これより αの方程式が得られる。 (2)まず,与えられた等式を。f(t)dt=-x+3x と変形して,両辺をxで微分。 CHART 定積分の扱い SS を含むならxで微分 (1)S*f(t)dt=x-3x-4……… ① とする。 解答 ①の両辺をxで微分すると cSf(t)dt=2x-3 あ すなわち f(x)=2x-3 Sof(t)dt=f(x) また, ① で x=α とおくと, 左辺は0になるから 0=α²-3a-4 Sof(t)dt=0 よって (a+1)(a-4)=0 a=-1,4 したがって f(x)=2x-3;a=-1, 4th()( (2) Sef(t) dt=x-3xから (1)しさん? X ◄S¢ƒ(t)dt=−S*ƒf(t)dit Ss(t)dt=-x+3x ② 上端と下端を交換しない d=jbで ②の両辺をxで微分するとSof(t)dt=3x2+3 すなわち f(x)=-3x2+3 また,②で x=αとおくと, 左辺は0になるから 0=-α+3a ゆえに a(a²-3)=0 よってa=0, ±√3 したがって f(x)=-3x2+3;a=0, ±√3 dca dx Saf (t)dt=-f(x) としてもよい。

解決済み 回答数: 1
数学 高校生

(2) →矢印の変形はどうしてするのでしょうか?? ∮aからxの形で使わなければならない???でもxからaだとダメな理由を教えてください。お願いします

380 基本 例 242 定積分と微分法 (1) SF(1)dt=x-3x-4 次の等式を満たす関数f(x) および定数aの値を求めよ。 (2) 1000 (t)dt-x-3x 指針 とすると であるから, off(t) dt=f(x)が成り立つ。 a が定数のとき,s (1) dt は xの関数である。 その導関数について,F( dx) (t)= [F(1) = x (F(x) F(a))=F(x)=(x) 0.374 dx また、等式で x=α とおくと, f(t) dt=0 であるから, 左辺は0になる。 これより αの方程式が得られる。 (2) まず,与えられた等式を f(t)dt=-x+3x と変形して, 両辺をxで微分 定数F (α) はxで微分すると、 CHART 定積分の扱い SS"を含むならxで微分 (1) Sof(t)dt=x-3x-4 ① とする。 解答 ①の両辺をxで微分すると dx Ja ds.f(t)dt=2x-3 すなわち f(x)=2x-3 また, ① で x=α とおくと, 左辺は0になるから 0=α²-3a-4 よって (a+1)(a-4)=0 したがって ゆえに a=-1,4 f(x)=2x-3;α=-1,4 (2) Sef(t) dt=x3xから df(t)dt=f(x) dx SSf(t)dt=0 Sof(t)dt=-x+3x ②の両辺をxで微分すると Ja すなわち f(x)=-3x2+3 上端と下端を交換した ② で axSof(t)dt=-3x2+3 また,② で x=α とおくと, 左辺は0になるから ゆえに したがって 0=-a³+3a a(a²-3)=0 よって a=0, ±√3 f(x)=-3x2+3;a=0, ±√3 df (t)dt=flt としてもよい

解決済み 回答数: 1
数学 高校生

(3)(ii)で、黄色マーカーのところで、 ・3s^2-2s-3はどこからきたのか ・9s^2+14s+1で割るとわかるのはなぜか がわかりません。教えてください。

【5】 a b を実数とする。xについての関数f(x)。g(x)を次のように定める. f(x)=xx-x+α.g(x)=-x+bx+4 x=f(x)は極小値を, g(x)は極大値をもち,これらの値は一致する. 次の問いに 答えよ. (1) tの値を求めよ. (2) a. bの値を求めよ. (3) 関数h(x) を次のように定める。 「f(x) (x<t のとき) h(x)= g(x)(xtのとき) (i) h(x) の最大値を求めよ. () 曲線y=h(x) をCとし, Cと異なる2点で接する直線を1とする.Cと1の2 である. (3)i) (1)のf(x)の増減表より, h(x)はxで増加し、 x < 1 で減 少する. また, 曲線y=g(x)は軸が直線x=1で上に凸の放物線であるか ら.h(x)はx≧1で減少する. よって、 (x)の増減は下表のようになる. ... 1 h(x) 15 増減表よりh(x)はx=132 のとき最大値 つの接点のx座標を求めよ. (40点) 考え方 (1) f'(x) を計算し、f(x)の増減を調べましょう. (2)(1)をもとに,f(x)の極小値を求めましょう。また,g(x)は2次関数ですから,平方完成をしてg(x)の極大値を 求めましょう。g(x) の極大値は微分法を用いて求めることもできます. (3)i) (1) (2) をもとにh(x) の増減を調べましょう. (曲線y=f(x)(x<t) 上の点 (s, f(s)) における接線が曲線y=g(x) (x≧t)に接する条件を考えましょう。曲線 y=f(x) (x<t) 上の点 (s, f(s)) における接線が,y=g(x)(x≧t)上の点(u, g(u)) における接線と一致すること を利用する方法もあります。 解答】 f(x)=xx-x+α より f'(x) = 3x²-2x-1=(3x+1)(x-1) なるので, f(x) の増減は下表のようになる. 1 x .... .... 1 ... f'(x) + 0 0 + f(x) 7 って, f(x) はx=1で極小値をもつので る. t=1 より, f(x) の極小値は f(1)=1'-1'-1+a=a-1 3. また (x)=(x-2/28)2 +12+4 (答) (1/3)=(-1)-(1)-(3)-(-1)+6 -1-3+9+162-167 をとる. ( Cは下図のようになる。 y=f(x) (8, f(s)) y = g(x) u (uif(w) ...... (答) 三択問題 6.2のとき。 a-1と +4の値はともに5である. 4 xにつ +2 (x) N for = f(s)=35-28-1 この接線は(vif(a))も通る。 y=(3s2-2s-1)(x-s) + s-s-s+ 6 図より Cとはx=s, u(s<1<u) で接するとしてよい.s<1より, I の方程式は y=f(s)(x-s)+f(s) (8,ρ(よ))における接線の方程式 より(8,t(s)の傾き Cのx <1の部分はy=f(x) で 表されるので,y=f(x)のグラ フの接線を求めている すなわち y=(3s2-2s-1)x - 2s + s' + 6 である. よって, C と1がx=u (u> 1) で接する条件は,x>1のとき h(x)=g(x) であることに注意すると (3s2-2s-1)x-2s' + s' + 6 = x + 2x + 4 g(x) x2+ (3s2-2s-3)x - 2s' + s + 2 = 0 が重解をもつことである. このとき ← ・接線と(2)の接点は いてある。 ………….. ① g()と(352-25-32-4(-2s'+s°+2)=0←①の判別式をDとするとD-O「①が重解をもつ①の判 「別式が0である」ことと、 ① が 重解をもつとき、その解は 3s22s-3 u = - 2 すなわち 金額をもつときax+bx+c=0の2解をdBdXB (35-25-3) = b 2-1 x+B= a+d=- であることを用いた、 (x)はx= 11/10で極大値+4をもつよって 曲線y=g(x) は上に凸の放物線 であるから, g(x) は頂点におい 極大となる. すなわち 解説 1° (別解) =1 b2 +4=a-1 4 a=6,b=2 -②数 17- ......(答) 201= ②数 18-

未解決 回答数: 0