学年

教科

質問の種類

数学 高校生

この問題が分かりません。明日に授業で発表しなくてはなりません。どなたか教えてください。お願いします。

36 難易度 ★★ 目標解答時間 15分 0 を原点とするxy 平面上において,最初、 点 (1,0) にある点Pと点(0, 2) にある点Qが,次の 規則にしたがって移動する。 E [規則] さいころを1回投げて は (a) 1または2の目が出たとき,点Pはx軸方向に +1進み, 点 Qは動かない。 Q₁ (b) 1と2以外の目が出たとき,点Qはy軸方向に +1進み, 点 Pは動かない。 2 S 0 この試行を何回か繰り返したときの点P,Qについて,二つの線 分OP, OQを隣り合う2辺とする長方形の面積をSとする。 (1) さいころを3回投げたとき, S9 になる確率は ア である。 (2) さいころを1回投げたとき, 1または2の目が出るという事象をAとする。 さいころを5回投げ たとき,5回ともAが起こる場合は S ウエ であり, 4回だけ A が起こる場合は S オカ 確 率 である。 (3) さいころを5回投げたときについて考える。 S= ウエ になる確率は キ ク であり, S=オカ ケコ になる確率は 。 である。 また, S≧ ウエ であるとき、点Pのx座標が4以下である条件 サシ 付き確率は [スセソ タチツ である。 (4) さいころを3回投げたときのSの値に対して得点を与える次の二つのゲームがある。 ゲームI: S= 9 であれば9点, その他のときは0点 ゲームII: S = 5 であればα点, その他のときは0点 ただし, αは自然数とする。 二つのゲームを比較し,正の得点を得る確率は テ 。 テ | の解答群 ⑩ ゲームIの方が大きい ① ゲームII の方が大きい ②どちらも同じである 得点の期待値が大きい方のゲームを選ぶことにする。 ゲームII が選ばれるようなαの値の範囲は a≥ である。 (配点 15 ) (公式・解法集 40 42 43 44

回答募集中 回答数: 0
数学 高校生

1枚目の?下線部がよく分かりません。右の丸で囲んである部分も同じような内容が書かれているのですがよく分からず… 私は2枚目のように解きました。私とやっていることは理屈は同じなのでしょうか?

基本 例題 10 支払いに関する場合の数 あの①①① 000 1500円,100円 10円の3種類の硬貨がたくさんある。 この3種類の硬貨を使っ て,1200円を支払う方法は何通りあるか。 ただし, 使わない硬貨があってもよい ものとする。 指針支払いに使う硬貨 500円 100円 10円の枚数をそれぞれx, y, z とすると 解答 500x+100y+10z=1200 (x,y,zは0以上の整数) この解 (x, y, z) の個数を求める。 からxの値を絞り、場合分けをする。 ~ 金額が最も大きい500円の枚数xで場合分けすると, 分け方が少なくてすむ。 支払いに使う500円,100円 10円硬貨の枚数をそれぞれx, y, 基本7 とすると,x, y, zは0以上の整数で 500x+100y+10z = 1200 すなわち 50x +10y+z=120 ゆえに 50x=120-(10y+z) 120 よって 5x≤12 不定方程式 (p.515~)。 Ay≥0, z≥0 75345 xは0以上の整数であるから [1] x=2のとき x=0.1.2 10y+z=20 この等式を満たす0以上の整数 y, zの組は (y, z=2,0),(1,10), (0,20)の3通り。 [2] x=1のとき 10y+z=70 この等式を満たす0以上の整数 y, zの組は (y,z)=(70) (6, 10), ...... (070) の8通り。 [3] x=0のとき 10y+z=120 この等式を満たす0以上の整数 y, zの組は ( (y, z)=(12,0), 11, 10), ..., (0, 120)の13通り。 [1] [2] [3] の場合は同時には起こらないから求める場合の 数は る P3+8+13=24 (通り) 50x≤120 これを満た す0以上の整数を求める。 110y=20-z≦20から 10y 20 すなわち y≦2 よってy=0, 1, 2 10y=70-z70から 10y≦70 すなわち y≦7 よって y=0, 1, …, 7 10y=120-z120から 10y≦120 すなわち y≦12 ., 12 よって y=0, 1, ... (S) 和の法則 31 311 1章 2 合の数

回答募集中 回答数: 0
数学 高校生

テトナがわかりません。 答えに樹形図があったのですがいまいち理解ができませんでした…どなたか写真の樹形図の説明と書き方を教えてください。 すみませんがよろしくお願いします🙇‍♀️

第4問 (配点 20) 1個のさいころを繰り返し投げ,次の規則(a), (b) にしたがって箱の中の球の個数 (以下, 球数) を変化させる。 最初, 箱の中に球は入っていない。 (2) さいころを2回投げた後の球数のとり得る値は, 小さい方から順に 2, ウ I 2回 であり,それぞれの値をとる確率は次のようになる。 規則 (a) 1回目に出た目が, 3の倍数のときは箱に球を1個入れ, 3の倍数でないと きは箱に球を2個入れる。 b 2回目以降は次のように球数を変化させる。 出た目が3の倍数のときは箱に球を1個追加する。 出た目が3の倍数でないときは球数が2倍になるように球を追加する。 例えば, 1, 2, 3回目に出た目がそれぞれ 6, 3, 2ならば, 球数は 0個 → 1個 +1 ← 2個 4個 +1 ×2 と変化する。 ア (1) さいころを1回投げるとき, 3の倍数の目が出る確率は である。 イ (数学Ⅰ 数学A第4問は次ページに続く。) 球数 2 ウ I 確率 13 オ キ カ ク ケコ よって, さいころを2回投げた後の球数の期待値は である。 また, さいころを2回投げた後の球数が エ であったとき 2回目に出た目 シメ が5である条件付き確率は である。 スメ (3) 球数が5以上になったところでさいころを投げることを終了するものとし, 終了 するまでにさいころを投げる回数をN とする。 ソタメ Nの最小値は であり, N= となる確率は である。 チツ× テトX X また,Nの期待値は である。 X

回答募集中 回答数: 0
数学 高校生

この問題を解いた上で写真3枚目の疑問にお答えいただきたいです。 ご要望があり次第、 解答も写真に載せます。

数学A 場合の数と確率 46** 8/11 (目標解答時間:塩分) 1から6までの番号が一つずつ書かれた6枚のカードがあり、これを6 1枚ずつ引いていく。ただし、引いたカードは元に戻さない。 6人が 花子さんは2番目にカードを引くことになっており、いたカードの番号が2のと きコインをもらえる。また、太郎さんは4番目にカードを引くことになっており、 いたカードの番号が4のときコインをもらえる。 (1)太郎さんと花子さんは、コインをもらえる確率について話している。 太郎: 花子さんの方がコインをもらえる確率が大きいよね。 引 花子 太郎さんの方がコインをもらえる確率が小さいって思うのはどうしてか な? 太郎: 花子さんの前にカードを引く人は1人しかいないんだから、番号2の カードを引く確率は大きいと思うよ。 花子:6枚のカードの並べ方を考えて、それぞれがコインをもらえる確率を考 えてみよう。 1から6までの番号が一つずつ書かれた6枚のカードを左から横一列に並べて、 左から24番目のカードの番号をそれぞれn2, nとする。 このとき、花子さんと太郎さんがコインをもらえる確率は,それぞれ n=2, n=4となる確率を考えることと同じである。 (i) 6枚のカードの並べ方は全部でアイウ通りあり、これらは同様に確からし い。 n2=2となる並べ方は、左から2番目に番号2のカードを並べて、残りの5枚 のカードを左から1,3,4,5,6番目に並べればよいのでエオカ通りある。 キ よって,花子さんがコインをもらえる確率は である。 ク (次ページに続く。) -86-

回答募集中 回答数: 0
数学 高校生

(1)の答えが14個なんですけどなぜ14個なんでしょうか

解答 648を素因数分解すると する。 648=23.34 648 の正の約数は, 23 の正の約数と3の正の約数 の積で表される。 648の素因数 2)648 2)324 23 の正の約数は,1,2,22,23の4個 2)162 34 の正の約数は,1,3,32,3334 の よって, 648 の正の約数の個数は 5個 3) 81 4×5=20 (個) 答 3) 27 648 の正の約数は (1+2+2+23)(1+3+3+33 +3) を 3) 9 展開した頃にすべて現れる。 3 参考 よって, 求める和は (1+2+4+8)(1+3+9+27+81)=15×121=1815 答 自然数NがN=pqr と素因数分解されるとき,Nの正の約数 個数は (a+1)(6+1)(c+1) 総和は (1+p+…+p) (1+g++g°)(1+r+....+r) 練習 28 次の数について,正の約数は何個あるか。 (1) 192 (2)800 練習 29 360 の正の約数の個数と, 正の約数すべての和を求めよ。 テーマ 11 場合の数の応用 TTT 応 1000円札3枚,500円硬貨1枚,100円硬貨2枚の全部または一部を て, ちょうど支払うことのできる金額は何通りあるか。 考え方 1000円札 500円硬貨,100円硬貨の使い方を考えて,積の法則を使 ただし、金額が0円になる場合は除かれる。 解答 1000円札の使い方は0枚~3枚の 4通り 500円硬貨の使い方は0枚と1枚の2通り 100円硬貨の使い方は0枚~2枚の3通り このうち、全部0枚の場合は0円になるから除く。 忘れないよう よって、支払うことのできる金額は 4×2×3-1=23 (通り)

回答募集中 回答数: 0