学年

教科

質問の種類

物理 高校生

重要問題集85の(3)(4)です。 (3)書いてある言葉の意味は分かります。なぜ1がsinθとルートの間に入ったのかがわからないです。 (4)1行目までしか言ってる意味がわからないです。 受験に物理を使わないので基礎知識がだいぶ欠落しています(>_<) 頑張って理解する... 続きを読む

必解 85. 〈光の屈折〉 図は屈折率の異なる2種類の透 明な媒質1 (屈折率 n) と媒質 2 (屈折率n2) からなる円柱状の二 重構造をした光ファイバーの概念 図であり,中心軸を含む断面内を 光線が進むようすを示している。 中心軸に垂直な左側の端面から入射した光線が、 媒質の境界で全反射をくり返しながら反対 側の端面まで到達する条件を調べてみよう。 空気の屈折率は1としてよく, 媒質中での光損 失はないものとする。 また媒質2の内径および外径は一定であり, 光ファイバーはまっすぐ に置かれているとしてよい。 中心軸 L 媒質2 媒質 1 媒質 2 B (1) 左側の端面への光線の入射角を0とするとき COSα を0と」 を用いて表せ。 (2) 光線が光ファイバー内で全反射をくり返して反対側の端面に到達するための sin0 に対 する条件を 1 2 を用いて表せ。 ただし,0°<0<90°とする。 (3)0° <890°のすべての入射角0に対して境界 AB で全反射を起こさせるための条件を nとn2 を用いて表せ。 (4) 光ファイバーの全長をL, 真空中での光の速さをcとするとき (2)の条件を満 左側の端面から反対側の端面に到達す7 土地 ミ

回答募集中 回答数: 0
物理 高校生

(1)で電流がE→C1→R2→C2→Eの向きで流れるのは何故ですか?

94 15 直流回路 必解 115. <コンデンサーを含む直流回路> 抵抗 R1, R2, R3, コンデンサー C1.C2, スイッチ S1, S2 および 電池Eからなる回路がある。 R1, R2, R3 の抵抗値はそれぞれ2Ω, 4Ω 6Ωであり, C1, C2 の電気容量はともに4μF, E は起電力が 12V で内部抵抗が無視できる電池である。 最初 S は開いており S2 は閉じている。 (1) S1 を閉じた瞬間に R2 を流れる電流はいくらか。 (2) S1 を閉じて十分時間がたったとき R2 を流れる電流はいくらか。 (3) (2) のとき, C に蓄えられた電荷はいくらか。 (4) 次に, S と S2 を同時に開き, 十分時間がたった。 そのとき C に加わる電圧はいくらか。 (5) (4) のとき, R1 で発生する熱量はいくらか。 [東京電機大改] C1 S2 R3 S1 R₁ R₂ 必解 116. <電球とダイオードを含む直流回路〉 図1のように,電球, ダイオード, 抵抗値 20Ωの抵抗, および電圧 値を設定できる直流電源からなる回路を考える。 電球は図2のような 電流電圧特性をもつ。 ダイオードは図3で示すように,電圧 1.0V 未 満では電流 0A, 1.0V以上では電流 [A] = 0.20×(電圧 〔V〕 -1.0)の 電流電圧特性をもつ。 次の問いに答えよ。 (1) 電球の電流電圧特性に着目する。 電球の抵抗値は一定ではなく, 電圧や電流の値によっ 抵抗 20Ω 本 て異なる。 電球の抵抗値が26Ωになるときの, 電球に加わる電圧を有効数字2桁で求め よ。 S ダイオード 図1 電球 電源

回答募集中 回答数: 0
数学 高校生

解の存在範囲の問題です (2)でtの存在範囲に持ち込むのは分かるのですが、|x|≧1が与えられているのに|X|で場合分けしているのは何故ですか

ポイント①! 1: y = -tx + ということです。 t² 2 (1) 直線OA の傾きは よって, 1:y=-t + t² 1 を満たす実数t (t≧1) が存在する + Y = -tX+ 2 2 ポイント! 最小値の 場合分け 2 (2) (X,Y) を通る が点 (X,Y) を通る y = − 1 ( x − 2²2 ) + 12/1/2 問題33の解答 1 :: 1:y=-tx + + 2 2 519 Explore (t0) であるから、1の傾きは t y .. -1 X -1 1 求める条件は, f(X) = - X° − 2Y + 1 ≦ 0 1 Y2-=X² + 2 1 O せん。つま 1 t² 1 存在条 ⇒ Y = -tX + + を満たす実数t (t≧1) が存在する ⇔f-2X-2Y + 1 = 0 を満たす実数t (t≧1) が存在する 2 2 f(t) = f - 2Xt − 2Y + 1 = (t - X) - X-2Y + 1 とする。 (i) |X|≧1 (X ≦ -1, X≧1) のとき←頂点で最小となるとき y=f(t) y=f(t) -11 A(t,1 X 22 X≦1-1≦X≦1) のとき← /y = f(t) ポイント [2]! 求める条件は, ✓ -1 X 1 f(-1)=2X-2Y+2≦0 または ← x=1のとき y≧x +1 または y≧-x+1 一区間の端点で最小となるとき y=f(t) t コメント! op -1 f(1)=2X-2Y+2≦0 ..Y ≧ X + 1 または Y≧ - X +1 以上 (i), (i) より求める範囲は次のとおり。 x≧1のとき 1 =-x²²+ 1 2 X 1 最小値をとるのがt=1のときなの かt=-1のときなのかを場合分け しなくても 「または」 でまとめて考 えられる(メント! 参照)。 -1 y 01 y=x+1 境界を含む y=-x+1 p=12/2x+1/12/2 -x² y=- ① 求める図では, 放物線と直線は接しているんだ。 y=-12x+1/1/28y=x+1からyを消去すると (x+1)^2 = 0 となるから, 放物線と直線はx=-1で接しているんだ。 放 物線と直線y=-x+1についても同じだよ。 ②通過領域の問題は入試でも頻出の重要問題だよ。 本間では結局の存 在条件に帰着させるんだけど,この部分は問題32 と同じ考え方だね。 ③ 2次方程式が解をもつかどうかは, 問題3でも学んだように, 最小値に ついて考察するから、 問題33 133 Cha 図形と方程式

回答募集中 回答数: 0
物理 高校生

高校物理過渡現象の問題です。 (6)の考え方は一通り理解できたつもりなのですが、二つのコンデンサが等電位になっているのに、電流が流れ続けるのが少し引っかかりました。図cを見る限り、電位差がなくなった後、コンデンサ3に電流が流れ込みいっぱいになったら今度はコンデンサ2に電流が... 続きを読む

法則ⅡIより / Vo+VL-0=0 よって VL=-12/Vo *B コイルに加わる電圧の大きさは 1/2vo AIL Vo (5) VL-24 だから12/2014/1 4t よって 12 4t 2L また、自己誘導が電流の流れを妨げるから、 電流は 0 AIL (6) コンデンサー C3 に流れこむ電流Icの変化は, 電気振動で示されるから, ス イッチ S2 を閉じた時刻を t=0, 電流の最大値を IM として, 図cのように表 される。 直列回路より電流は共通であるから, C3 に流れこむ電流が最大の とき, コイルに流れる電流も最大となる。 電流が最大のときは電流変化が 0 よりコイルの電位差が0であるから ※C, C2, C3 の電圧は等しく、その電圧 をVとすると, 電気量の保存より 12/23CV +0=CV+CV よってV=1/2vo ゆえに,C』に蓄えられている電気量Q3は Q321/Cro エネルギー保存より 1 c. (v.)² +0=1 c · (v.)³×2+LIM² LIN²=12/2CV32 よってIw=1/12/0 C 4 L L 12/12/10 =1/12/0 +CV. C₂ 1/12 Cro 図 d Ic IM O m VL 図 b ◆B コイルの左側が高電 位となる。 12/12/0 o(E C30 +CV C2 -CV 0 C3 *C V₁=-Lt AIL 4t fi 図 c AIL -= 0 だから Vi=0 L IM 図e C3 +CV V: -CV 物理重要問題集 151

回答募集中 回答数: 0
数学 高校生

至急です🙇🏻‍♀️ (1)の解説お願いします 重要問題集2024共通テスト

47 難易度 ★★★ 目標解答時間 15 分 SELECT SELECT 90 60 花子さんの住んでいる町内で毎年行われているクリスマス会では、参加者全員にスナック菓子を1 袋ずつ配ることになっている。 今年は、花子さんがスナック菓子を買うことになり, 1年前のクリス マス会を知っている人に話を聞いた。 1年前は,参加者は30人で, スナック菓子は, 3袋入りの箱と7袋入りの箱の2種類が売られていた。 3袋入りをa箱,7袋入りを6箱買うと、30人全員に1袋ずつ残さず配ることができたという。ただし, はともに0以上の整数とする。このことから アイ 3a+76 が成り立ち、①を満たす a, bの組(a,b) は, (a,b)=(ウェ 組だけ存在する。 (1) 花子さんは,参加者が何人であれば,3袋入りと7袋入りの箱をうまく組み合わせて買うことで, スナック菓子を参加者全員に1袋ずつ残さず配ることができるかに興味をもった。参加者全員に1 袋ずつ残さず配ることができない場合について考えよう。 THI 3袋入りをx箱,7袋入りを箱買うとする。 ただし,x,yはともに0以上の整数とする。 (i)yが3の倍数のとき、y=31(10以上の整数)と表すと 7 3x+7y= (x+ ケ 1) であり, 3x+7yと表される数はコ以上の3の倍数すべてである。 (i)yを3で割った余りが1のとき, y = 3l+1(Zは0以上の整数)と表すと 1 3x+7y=サ (x+ l + ス + セ (ただし, > であり, 3x+7yと表される数は3で割った余りがソロである整数であり, そのうち最小のも のはタ である。 4 (yを3で割った余りが2のとき, (i), (ii)と同様に考えると, 3x +7y と表される数は3で割っ た余りがチである整数であり, そのうち最小のものはツテである。 オ カ キ の2 6 個ある。 (i)~(i)より, 3x+7y (x, y はともに0以上の整数)と表されない自然数は全部でト すなわち, 3袋入りと7袋入りの箱をどのような組み合わせで買ったとしても、参加者全員に1 袋ずつ残さず配ることができない参加人数は全部でト通りある。 (2) 今年は別のスナック菓子を買うことにした。 そのスナック菓子は2袋入りの箱, 5袋入りの箱の 2種類が売られており、中身のパッケージのデザインも異なっていたため, クリスマス会を盛り上 げるため,2袋入り 5袋入りのどちらも1箱以上買うことになった。 このとき2袋入りと5袋入りの箱をどのような組み合わせで買ったとしても、スナック菓子を (配点20) 参加者全員に1袋ずつ残さず配ることができない最大の参加人数はナニ人である。 10 【公式・解法集 48 整数の性質

回答募集中 回答数: 0