学年

教科

質問の種類

数学 高校生

数学の宿題です。キ、クが分かりません。誰か教えてもらえないでしょうか、、、。明日提出なのでなるべく早くお願いしたいです🙇‍♀️

【5】 次の先生とAさんの会話を読んで、下の(1)~(3)の問いに答えなさい。 先生: 三角柱において、 頂点の数をV、 辺の数をE、面の数をFとして、 V-E+Fの値を求めてみましょ う。 Aさん:アになります。 先生: 正解です。 このようにどの多面体においても、 V-E+F=ア (※) はつねに成り立ちます。 こ のことをオイラーの多面体定理といいます。 ところで、 正多面体は全部で何種類ありますか。 Aさん:イ種類あります。 先生: 正解です。 正二十面体は同じ大きさの20個の正三角形で囲まれた立体で、 v=ゥE=エ F=20ですから、オイラーの多面体定理が成り立 ちますね。 では、 右の図のような、 すべての頂点が1個の正五角形 (黒い面) と 2個の正六角形(白い面)が重なっている多面体Sを考えます。 この多面体Sの 正五角形の面をx個、 正六角形の面を個とするとき、オイラーの多面体定 理を用いて、x、yの値を求めてみましょう。 Aさん : わかりました。 多面体SのV、E、F をそれぞれx、yを用いて表してみます。 多面体Sの頂点は、正五角形1個と正六角形2個の頂点どうしが重なっている から、V=オ ….① コ 多面体Sの辺は、正五角形や正六角形の辺と辺が重なっているから、 E=カ ...(2) また、 F=x+y … ③ ①~③を (※)の式にあてはめると、x=キを得ます。 また、 この多面体の頂点の数は、すべての 正五角形の頂点の数の和に等しいから、y を得ます。 先生: よくできました。 (1) 会話文中のア ア (2) 会話文中のオ おくこと。 (3) 会話文中のキ ホ3 に適する数を求めなさい。 5x+6g . カに適するxとyを用いた式を求めなさい。 ただし、式は最も簡単な形にして 5x+6y カ 6- クに適する数を求めなさい。 2

未解決 回答数: 1