学年

教科

質問の種類

数学 高校生

フォーカスゴールドの問題です。最後の2行の意味がわかりません、お願いします。

524 第9章 図形の性質 Check 例題281 中線上の点の性質 右の図のように,△ABC の辺BCの中点をMとし、 線分AM上に1点Pをとり、 BP, CP の延長と辺AC, AB との交点を,それぞれ, D, E とする. このとき, BC/ED を示せ . [考え方] 平行線と線分の比. つまり、 Focus 練習 281 AE: EB=AD: DC ならば、 BC//ED wwwmmmmm が適用できないか考える. そのために,中線AMのMの方への延長上に点F をとって考えると, 四角形 BFCP が平行四辺形で あれば, EP/BF となり, AE: EB=AP:PF で あることがわかる. EC//BF, BD //FC B とって示せばよい。このような線分 MF を, 証明するための補助線という。 解答 中線AMをMの方に延長して, 補助線を引く. Mは PF の中点となる。 PM=MF となる点Fをとる. Mは辺BCの中点だから, BM=MC 点Fのとり方から, PM=MF したがって, 四角形 BFCP は平 行四辺形である. よって, △ABF で, EP/BF より AE: EB=AP: PF △AFC で PD/FCより, AP: PF=AD : DC したがって, ①, ②より、 AE: EB=AD:DC よって, BC/ED B そこで、 この例題を証明するには, 線分PM を2倍に延長し, PM=MF となる点を D 右の図のように、△ABCの辺BCの中点をM とし, AMのMの方への延長上に点Qをとり, BQ,CQの延長と AC, ABの延長との交点 をそれぞれ, D, Eとする. このとき, BC/ED を示せ. E C B M E /F 対角線がそれぞれの中 点で交わる. EC/BF だから、 EP/BF BD/FC だから、 PD/FC 中線を延長すると,平行四辺形の性質や平行線と線分の比の関係が 利用できる AE: EB=APPF APPF=AD:DC M

解決済み 回答数: 1
数学 高校生

(1)のAFの求め方がわかりません! 解説を見てもわからないので教えてください!

三角形の △ABCの重心をG,直線AG, BG と辺BC, AC の交点をそれぞれD, E 礎 例題 52 とする。 また、点Eを通り BC に平行な直線と直線AD の交点をFとする。 (1) AD = α とおくとき,線分 AG, FG の長さをαを用いて表せ。 (2) 面積比 △GBD: △ABC を求めよ。 BLERINCOS CHART 【GUIDE第二重三角形の重心 ゆえに 味2:1の比辺の中点の活用 (1)(後半) 平行線と線分の比の関係により AF:FD を求める。E は辺 AC の中 点であることに注意。 ■解答 (1) G は △ABC の重心であるから AG: GD = 2:1 17 (13 2 よって AG= また,Eは辺ACの中点であり,FE/DC であるから AF : FD=AE: EC=1:1 よって (2) △ABDと△ADC, ABG と AGBD に分けると,それぞれ高さは共通で等し いから、面積比は底辺の長さの比に等しいことを利用する。 AF よって したがって = = ...... 2 -AD= >= ² a 1/12/AD=1/24 75 2+1 23 TARBICAR FG=AG-AF 2 3 (2) 点Dは辺BCの中点であるから AABC=2AABD また, AD: GD=3:1であるから AB AC と△ABD = 3△GBD 辺 『△ABC=6△GBD a a-- a= -a AGBD:AABC=1:6 B B Ⓡ 2/F W EEAA Jotu SHOG GEONSORO (S) D D B 中日 Ebat C 58平行線と線分の比の関係 800-580 内高さがんで共通 3章 TIRUOA ABC:△ABD 9 ←高さがん で共通 三角形の辺の比,外心・内心・重心 =BC : BD →AABD: AGBD =AD : GD

解決済み 回答数: 1
数学 高校生

白チャートの重心の問題です! (2)がわかりません!分かりやすく解説お願いしたいです!

1 & the △ABCの重心をG, 直線AG, BG と辺BC, AC の交点をそれぞれD, E とする。また, 点Eを通り BC に平行な直線と直線AD の交点をFとする。 AD=aとおくとき,線分 AG, FG の長さをα を用いて表せ。 (2) 面積比 △GBD : △ABC を求めよ。 CHARI GUIDEMOC 三角形の重心 2:1の比辺の中点の活用く (1)(後半) 平行線と線分の比の関係により AF:FD を求める。 E は辺 AC の中 点であることに注意。 (2) △ABDと△ADC, △ABG と AGBD に分けると, それぞれ高さは共通で等し いから、面積比は底辺の長さの比に等しいことを利用する。 解答 (1) G は △ABC の重心であるから AG: GD=2:1 AG =- -AD=- a 2 2 よって 2+1 3RD DE CASA また,Eは辺ACの中点であり, FE//DCであるから AF : FD=AE: EC=1:1 A よって ゆえに AF-12/AD-124 FG=AG-AF = すると = 1/30-120- よって したがって a ²-0-1-a=—a (2) 点Dは辺BCの中点であるから AABC=2AABD また. AD: GD=3:1 であるから AABD=3AGBD AABC=6AGBD $ROS AGBD:AABC=1:6 B ① B Bh' 2/F D G A ID E1108 GSGRO084 (1) 中 ign/58 h A = CRO 080平行線と線分の比の関係 8308 内高さがんで共通 HAABC: AABD 3章 C 三角形の辺の比,外心・内心・重 ←高さがん で共通 SAABD: AGBD =BC : BD IL =AD: GD

回答募集中 回答数: 0
数学 高校生

例題60で 最後らへんで これはCA🟰BAではなくないですか? 比が等しいと言っているだけと思ったのですが、、💦 何故か分からないので教えて欲しいです

二等分 の外角 DEの 基本 64 5 基本例題 60角の二等分線と比の利用 00000 「Eとする。 DE // BC ならば, AB AC となることを証明せよ。 △ABC の ∠C, ∠B の二等分線が辺AB, AC と交わる点を,それぞれD, CHARTO SOLUTION 平面図形の証明問題 条件を明確にする 平面図形の証明問題では,問題文の平面図形に関する 用語・記号を四角で囲むなどして、 解法の方針を見つ けやすくする。この例題では, ZB の二等分線, ∠Cの二等分線 定理1(三角形の角の二等分線と比) DE//BC ⇒ 平行線と線分の比 を利用して, AB=AC を示す。 直線 CD は ∠Cの二等分線であるから ・① AD: DB=CA: CB ...... 直線BE は ∠B の二等分線であるから AE: EC=BA : BC.∵ 一方, DE // BC であるから ②④から ①③から AD: DB=AE: EC・・・ |CACB=AE: EC CA: CB=BA: BC ...... したがって CA=BA すなわち AB = AC CACB=BABC (4) (1) A B (2) B (3) B A E C C A (0) E B p.325 基本事項 2 D A E (線分比) =(三角形の2辺の比) ◆CA: CB=BA: BC ↑同じ辺 INFORMATION 平面図形の証明問題を解く手順 ① 問題文の平面図形に関する用語・記号を四角で囲む。 ②与えられた条件をもとに図をかく。 場合によっては補助線を引く。 1③ 注意 証明の中で新たにつけ加える線分や直線のことを補助線という。 四角で囲んだ用語 記号から, 適用できる定理がどれなのかを考える。 そして, 図を参照しながら、式を立てる。 187509GRO BAZ Not 329 3章 7 三角形の辺の比,外心,内心、重心

回答募集中 回答数: 0