学年

教科

質問の種類

物理 高校生

(1)を図ありで説明して欲しいです🙇‍♂️

2.0m/s 例題 3速度の合成 →8 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船 川を直角に横切りながら、 対岸まで進む。 このとき, 川の流れの方向をx方向, 対岸へ向かう 方向を方向とする。 (1) 静水上における, 船の速度のx成分を求めよ。 (2) 静水上における, 船の速度の成分を求めよ。 第1章 ◆(3) へさきを向けるべき図の角8の値を求めよ。 脂指針 川の流れの速度と船 (静水上)の速度の合成速度の向きが, 川の流れと垂直になる。 解答 (1) 船が川を直角に横切るとき, 船の速度のx成 分と, 川の流れの速度は打ち消しあっている。 よって 船の速度の成分は (2) 船が川の流れに対して直角に進 むので、 右図のように,船 (静水 上)の速度と川の流れの速度の 合成速度が、川の流れと垂直に なる ここで, PQR は辺の比 が1:2:√3 の直角三角形であ る。 2.0m/s ① QR へ60° 4.0m/s 09 1 P2.0m/s よって PR=2.0√3≒3.5 ゆえに、船の速度のy成分は 3.5m/s 別解 三平方の定理より PR=√4.0°-2.02=√12=2√3 3.5 (3)(2)より0=60° [注] 川を横切る船はへさきの向きとは異なる向きに進 む。 [注 √31.732・・・ や, √2 1414・・・ などの値は覚え ておこう。 演の

回答募集中 回答数: 0
物理 高校生

高校物理電流と磁場の質問です 磁場の向きを考える時で右ねじの法則を使う時、HaベクトルとPAがなす角は90°と決まっているのですか?鉛筆で書いたような、HaベクトルとHbベクトルがなす角が60°にはならないのですか?

267 直線電流がつくる磁場の合成 十分に長い2本の導線 A,Bを2d [m] 離して平行に張る。 図のように,Aには紙面の 裏から表の向きにI [A] の電流を,Bには表から裏の向きに I [A] の電流を流した。図中の点Pでの磁場の強さ H [A/m] を 求めよ。 P 60° 例題 55 \60 60° 2d 267 B8 十分長い直線電流I〔A〕 が距離[m] の点につくる磁場は、 電流の向きに右ねじが進むようにねじ を回す向きで,その強さは H= [Am] となる。 磁場はベクトルであるから、点Pでの磁場は各 ここがポイント 2πr [VIT 直線電流がつくる磁場を合成して求める。 導線Aと導線Bが点Pにつくる磁場とは 右図のようになる。 導線Aと導線Bに流れる電流 はどちらも「[A] で, AP-BP=2d[m] である から、点Pにつくる磁場の強さは直線電流がつく る磁場の式 「H=- H HA HB 30° 30° より 2πr 60 I I HA=Hn= = [A/m] 2×2d And 点での磁場は,Hと77日を合成した磁場で -2d- B に平行な方向の成分は同じ大きさで逆向きなので打ち消しあい, 合成磁場 の向きは線分ABに垂直上向きになる。 H』とπの線分AB に垂直な 方向の成分は Dを Hasin30°=Hasin30°=ax/[A/m]5 であるから, 点Pでの磁場の強さは 1 別解 下図のように、 磁場 と君がな す角は60°である。 Hは豆 とTBを2辺とする平行四辺 形の対角線なので ∠PRQ=60° となり, △PQR は正三角形である。 ゆえに H=H= -[A/m] 4nd R 60H 60° 60° 060° #ダイ I 1 I H=2x = 4rd 2 And [A/m] (1+1)×0.0+0 HA H B P S

未解決 回答数: 0
数学 高校生

数IIサクシード 不等式の表す領域400 不等式の表す範囲、グラフは書けたのですが、全ての組み合わせを書くとなると、領域ギリギリのところを見落としたり、余分に数えたりすることが多いです。正確に全て書くコツや見落としていないか確認する方法はありますか?

>0 すなわ y- x+. 8-5 K1 -2 分である。 直線 BC の方程式は 直線 CA の方程式は x=-3 y=-3-2 -1-0 (x-2) -60 すなわち y=- 1 2 1≤0 -2 rec A, B, C を頂点とす る三角形の内部および 周上は,右の図の斜線 部分である。 ただし, 境界線を含む。 B 3 ある。 この斜線部分は, 直線ABの下側, C -1A 直線 BC の右側, 直線 CA の上側, の共通部分である。 80 x=2のとき,①,②から y² <4, y>- これを満たす整数yは y = 0,1 y2<1,y>0 x=3のとき,①,②から これを満たす整数y は存在しない。 よって、求める整数 ( x, y)の組は T-1, 0), (0,1),0,0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) 401 (1)xy>1から x-y<-1 または 1<x-s すなわち y>x+1 または y<x-1 よって,求める領域は 〔図] の斜線部分である。 ただし、境界線を含まない。 (2)x+y≤1 …………… ① x0,y≧0のとき,①は x+y≤1 よってy≦-x+1 x0,y<0 のとき,①は x-y≤1 よってy≧x-1 x< 0, y≧0 のとき,①は よって, 求める連立不等式は x+y よって y≦x+1) y- [y≤ -1x+ 4 8 x < 0, y<0 のとき,①は 5 x≧-3 (4x+5y-8 10+よって y≧-x-1 すなわち x+3≥0 ゆえに、求める領域は [図] の斜線部分である。 ただし,境界線を含む。 大 1 2 x-5y-2 この図の斜線部分1 (2) (1) 400 x2+y2-2x-4<0から +2 (x-1)2+y2<5 >4 x-2y-3<0から 3 y> 2x-2 ② よって, 与えられた不 等式の表す領域は,右 の図の斜線部分である。 ただし,境界線を含ま ない。 1-√5 図から 1-√5 <x<1+√5 これを満たす整数xは x=-1のとき, ①,②から これを満たす整数yは x=-1, 0, 1,2,3 x=0のとき, ①,② から これを満たす整数y は x=1のとき, ①,② から これを満たす整数 yは ① −10 -1 y2<1,y>-1 y=0 <4,y> / y=-1, 0, 1 y2<5, y>-1 y=0, 1, 2 402 指針 直線 y=ax + b が2点 P, Q を結ぶ線分 PQ と 両端以外で交わるとき, 右の図からわかるよう に, 2点P, Qは,直線 y=ax+bに関して反対 側にあるから、点P, Q y y>ax+b Q x <ax+b の 一方がyax+b の表す領域, 他方がy <ax+b の表す領域 にある。 条件を満たすのは、2点P,Qのうち,一方が直 線 y=ax+b の上側,他方が下側にあるときで ある。

未解決 回答数: 1
数学 高校生

1番は体積の最小値を求める問題 2番は表面積の最小値を求める問題です ここで,xとrで置いてる部分ってなぜそこをxとrでおいてるんですか?

7) a このとき, 直線 ①と両座標軸との交点の座標 (2,0), (0,2b)であり,Sの最小値は2 る。 184 ■指針 2ab Ta (1) 球の中心を通り、底面に垂直な平面で 円錐を切ってできる切り口の三角形を考え る。 円錐の頂点と球の中心の距離をxとし 円錐の体積をxを用いて表す。 (2)表面積を体積を表す式で表すことができ (1)の結果が利用できる。 (1) 球の中心を0とし, 0を通り底面に垂直な 平面で直円錐を切って できる切り口の三角形 を △ABC とする。 A x ... ア 3r dV 0 dx V 583 + よって,Vは x=3rで最小値 / ara をとる。 別解 [②までは,本解と同じ] (x+r2=(x-r)2+4rx であるから V= =(x-r2+4mx-r) +42 x²(x+r)² 3(x-r) ar2 (x-r2+4nx-r) +42 3 x-r 2 == (x-r) + 4r2 3 +4rs x-r また, 球の切り口の円 D との接点を図のように D, E とする。 0 OA = x とすると, x はより大きいすべて の実数をとりうる。 V≧ B ① より xr>0であるから,相加平均と相乗平 均の大小関係により 123 (2√√(x-7). Ar²+4)=3 472 8 x-r E 881 4r2 等号が成り立つのは,x-r= すなわち x-r よってxr △ABE △AOD であるから BE:r=(x+r): √x2-22 BE: OD=AE: AD すなわち よって ゆえに BE= √√x²-72 BE√x2=(x+r) (x+r) 直円錐の体積をVとすると (x-r2=4r2 のときである。 xr>0であるから よって x=3r x-r=2r ゆえに,Vはx=3yで最小値 / ara をとる。 T (2)直円錐の表面積を S とすると S=7. BE² DES +1/2AB AB 2TBE 2π BE V=BE². AE =BE (BE+AB) 0= AB、 ここで, mx+r) 2 (x+r) BE: OD=AB: AO 2 y2(x+2)2 = 3(x-r) dV dx 3 [側面の展開図] であるから -> (x>r) 22(x+r)(x-1)(x+r2.1 AO AB= ・BE OD よってAB=BE (x-2)² r ゆえにS=BEBE+BE)=xBE (1+-) r 2(x+r)(x-3) 3(x-r2 xにおいて, dv = 0 とすると x=3y dx ①の範囲におけるVの増減表は次のようになる r(x+r) 2 =π Tr(x+1)² 3. x-r r (+1) (1) から, Sはx=3rで最小値 をとる。 38 r 18 . TY r² = 8 x²

未解決 回答数: 1