数学
高校生

数IIサクシード 不等式の表す領域400
不等式の表す範囲、グラフは書けたのですが、全ての組み合わせを書くとなると、領域ギリギリのところを見落としたり、余分に数えたりすることが多いです。正確に全て書くコツや見落としていないか確認する方法はありますか?

>0 すなわ y- x+. 8-5 K1 -2 分である。 直線 BC の方程式は 直線 CA の方程式は x=-3 y=-3-2 -1-0 (x-2) -60 すなわち y=- 1 2 1≤0 -2 rec A, B, C を頂点とす る三角形の内部および 周上は,右の図の斜線 部分である。 ただし, 境界線を含む。 B 3 ある。 この斜線部分は, 直線ABの下側, C -1A 直線 BC の右側, 直線 CA の上側, の共通部分である。 80 x=2のとき,①,②から y² <4, y>- これを満たす整数yは y = 0,1 y2<1,y>0 x=3のとき,①,②から これを満たす整数y は存在しない。 よって、求める整数 ( x, y)の組は T-1, 0), (0,1),0,0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) 401 (1)xy>1から x-y<-1 または 1<x-s すなわち y>x+1 または y<x-1 よって,求める領域は 〔図] の斜線部分である。 ただし、境界線を含まない。 (2)x+y≤1 …………… ① x0,y≧0のとき,①は x+y≤1 よってy≦-x+1 x0,y<0 のとき,①は x-y≤1 よってy≧x-1 x< 0, y≧0 のとき,①は よって, 求める連立不等式は x+y よって y≦x+1) y- [y≤ -1x+ 4 8 x < 0, y<0 のとき,①は 5 x≧-3 (4x+5y-8 10+よって y≧-x-1 すなわち x+3≥0 ゆえに、求める領域は [図] の斜線部分である。 ただし,境界線を含む。 大 1 2 x-5y-2 この図の斜線部分1 (2) (1) 400 x2+y2-2x-4<0から +2 (x-1)2+y2<5 >4 x-2y-3<0から 3 y> 2x-2 ② よって, 与えられた不 等式の表す領域は,右 の図の斜線部分である。 ただし,境界線を含ま ない。 1-√5 図から 1-√5 <x<1+√5 これを満たす整数xは x=-1のとき, ①,②から これを満たす整数yは x=-1, 0, 1,2,3 x=0のとき, ①,② から これを満たす整数y は x=1のとき, ①,② から これを満たす整数 yは ① −10 -1 y2<1,y>-1 y=0 <4,y> / y=-1, 0, 1 y2<5, y>-1 y=0, 1, 2 402 指針 直線 y=ax + b が2点 P, Q を結ぶ線分 PQ と 両端以外で交わるとき, 右の図からわかるよう に, 2点P, Qは,直線 y=ax+bに関して反対 側にあるから、点P, Q y y>ax+b Q x <ax+b の 一方がyax+b の表す領域, 他方がy <ax+b の表す領域 にある。 条件を満たすのは、2点P,Qのうち,一方が直 線 y=ax+b の上側,他方が下側にあるときで ある。
✓ 400次の不等式を同時に満たす整数の組 (x, y) をすべて求めよ。 x2+y²-2x-4<0, x-2y-3<0

回答

具体的に聞いた方が、適切な回答がつきやすいですよ
漠然とした回答としては以下です

ひとつは境界の曲線の方程式を踏まえること、
この場合、円は(2,2)や(3,1)などを通るとか
直線が(3,0)や(1,-1)などを通るとかを踏まえることです

また、図に100%頼らず、解説のように
x=0ならyは-1.5<y<2だからy=-1,0,1の3点
のように細かいところを中心に式で詰めることです

この回答にコメントする
疑問は解決しましたか?