学年

教科

質問の種類

数学 高校生

なぜこうなるのか教えて下さい

256 基本 例題 161 対数不等式の解法 (2) 不等式 10gzx-610gx2≧1 を解け。 CHART & SOLUTION 00000 基本 対数不等式 底を2にそろえると log2x- おき換え [10gax=t]でtの不等式へ 真数の条件、底αと1の大小関係に注意 6 -≧1 底の変換公式 10g2x 6 となり,両辺にを掛けて logzx=t(tは任意の実数,ただしt≠0) とおくと,t-121 の2次不等式の問題に帰着できる。 ただし, tの符号によって不等号の向きが変わるので t0, t<0 で場合分けをする要領で解く。 ...... 基本 例題 162 対 関数y= (logzx)2-1 値を求めよ。 CHART & SOL 対数関数の最大 おき換え10ga logzx=t とおくと、 tのとりうる値の範 底2は1より大き よって,tの値の 解答 対数の真数, 底の条件から x>0 かつ x≠1 1 また logx2= log2x よって,不等式は log2x -≧1 log2x 底を2にそろえる。 x=1 から 10g2x=0) <α>1 のとき,x>1で 生 合 logzx =t とおく log2 すなわち 0 与えられた関数 ④ [1] 10g2x>0 すなわち x>1のとき y=(log ①の両辺に 10gzx を掛けて (logzx)2-610g2x logax>0 よって, y を よって (log2x)-log2x-6≥0 y=t2 <t²-t-6 =(t- ゆえに (logzx+2) (10g2x-3)≧0 (t+2) (t-3) ①の範囲に 10g2x+20 であるから t=3 底2は1より大きいから logzx-30 すなわち 10g2x3 x≥8 10gzx>0から。 t=1 log2xlog28 これは x>1を満たす。 をとる。 [2] 10gzx < 0 すなわち 0<x<1のとき α>1のとき, 10gzx=t t= ①の両辺に 10gzx を掛けて (10gzx)260gzx 0<x<1では10gax< したがっ よって (logzx)2-10g2x6≦0 ゆえに (log2x+2) (10g2x-3)≦0 10gzx-3<0 であるから よって -2≤log2x<0 底2は1より大きいから log2x+20 すなわち 10g2x≧-2 ←10gzx < 0から。 ←logs}\log;x<log! X= をとる。 ≦x<1 これは 0<x<1 を満たす。 [1] [2] から x<1,8≦x PRACTICE 161Ⓡ 不等式 210gx410gx27≦5 を解け。 PRAC (1) の (2) [類 センター試験) を

未解決 回答数: 1
数学 高校生

㈢の(iii)に付いて質問です。なぜ変形したまま最大値、最小値を求めることができるのでしょうか。💦 わかる方いたら教えてほしいです🙇

(i)(i)より,x+y2-2x=-x²-2x+8 =-(x+1)^+9 x-2y2の最大値と, (ii)より, -2≦x≦2 だから, <図I> より, 最大値9, 最小値 0 r'+y2-2.xの最大 つよ. 次の問いに答えよ. せ. 範囲を求めよ. 小値を求めよ. 平方完成は28 <図1> 注最小値は,r=-2 とx=2のときの の値を比べなくても、軸からの距離が 直線x=2の方が直線x=-2より違いがで ことから判断できます。 は置かれた式 8- -2-1 (3) (i) = ('+2x)=x^+4+42 だから <図Ⅱ> y=(x+4.3+4m²)+('+2x)+3 =t2+t+3 (ii) t='+2x=(z+1)2-1 65 -9 0 2 -2≦x≦1 だから, 〈図Ⅱ>より -1≤t≤3 0- (i)(i)より -2-11 y=t+t+3= 文字を消去したり,おきか ることがあります。このと えをすると -1≦t≦3 だから, <図II〉より t=3 のとき, 最大値15 る t=-1/2 のとき,最小値 1/14 あらゆる関数でいえるこ 平成 28 -8 2次不等式は44 <図目> 15 第3章 ●ポイント 文字を消去したり, おきかえたりしたら、 残った文字 演習問題 37 に範囲がつくかどうか調べる (1)x+2y=1 のとき, x+yの最小値を求めよ. (2) r'+2y=1のとき, '+4yの最大値、最小値を求めよ、 (3) y=-(-4x+1)'+2-82-1 (0≦x≦)について (i) 2-4.x+1=t とおくとき, tのとりうる値の範囲を求めよ、 (i)yの最大値、最小値を求めよ.

未解決 回答数: 0