学年

教科

質問の種類

数学 高校生

青チャート125がわからないです!!! 最後の方に変数をx.yに置き換えるとありますが、 XとYは最初にx+y、xyとおいたのでそっちに戻すと考えてしまいます、 どなたか教えていただきたいです!🙇‍♂️

重要例題125点(x+y, xy) の動く領域 00000 実数x, y が x2+y' ≦1 を満たしながら変わるとき,点(x+y, xy) の動く領域を 図示せよ。 指針▷ x+y=X, xy=Yとおいて,X,Yの関係式 を導けばよい。 ① 条件式x2+y'≦1 を X, Yで表す。 →x2+y^2=(x+y)²-2xy を使うと ->> しかし、これだけでは誤り! X2-2Y≤1 重要1230 変数のおき換え 範囲に注意 ② x, y が実数として保証されるようなX, Yの条件を求める。 → x, yは2次方程式ピー(x+y)t+xy=0 すなわち-Xt+Y=0の2つの解では るから,その実数条件として 判別式 D=X2-4Y≧0 解答 X=x+y, Y=xy とおく。 x2+y2≦1から したがって (x+y^2xy1 すなわち X2-2Y≦1 X2 Y≥ x²-1..... 10 ① また,x, yは2次方程式(x+y)t+xy=0 すなわち f2-Xt+Y=0 の2つの実数解であるから, 判別式をDとす ると ここで D≧0 D=(-X)2-4・1・Y=X2-4Y よって, X2-4Y ≧ 0 から 2数α, βに対して p=a+B, q=aß とすると, α βを解とする 2次方程式の1つは x-px+q=0 X2 Y≤ **........ (2) ① ①,②から X2 2 2 変数を x, y におき換えて x2 1 2 したがって, 求める領域は, 右の図の 斜線部分。ただし、 境界線を含む。 12 12 2 12 /2 4 2 2 11/01/10 とすると 検討 実数条件(上の指針の2)が必要な理由 X,YO x+y=X, xy=Y が実数であったとしても,それがx2+y'≦1 を満たす虚数x, Yの値という可能性がある。例えば、x=1/21+1/2/i.y=1/12/2 xy= 1 yに対応した iのとき x+y=1(実数) - (実数) で, x'+y'≦1 を満たすが x, yは虚数である。このような(x, y) を除外する めに実数条件を考えているのである。 練習 125 きの 座標平面上の点(p.4) 21

未解決 回答数: 1
数学 高校生

左のページは絶対値取らないでも計算できますが,右ページは場合分けする必要があるっていうのの理由を知りたいです。どういう場合に場合分けをしなければいけないかは把握してます

73 00000 (2) x-2<0 -1<0-1≥0 X-2≥0 72 基本 40 絶対値を含む方程式 次の方程式・不等式を解け。 (1)|x-1|=2 (2)|2-3x|=4 (3)|x-2|<3 指針 ただし,(1)~(4)の右辺はすべて正の定数であるから, 絶対値記号を含むときは、場合分けをして、絶対値 記号をはずして考えるのが基本である。 |A|= 次のことを利用して解くとよい。 >0 のとき 方程式|x|=cの解はx=±c -c<x<c 不等式|x|<c の解は 不等式|x|>c の解は x<-c, c<x (1)|x-1|=2から x-1=±2 x1=2 または x1=-2 x=3,-1 (4)基本 A 11=1_^ -A 例題 41 絶対値を含む方程式 P.63 次の方程式を解け。 (1) x-2|=3x (2)|x-1|+|x-2|=x AKO 絶対値記号を場合分けしてはずすことを考える。 それには, |x-1=Xとおくと |XI=2 よって X=±2 | (2) |2-3x|=|3x-2 であるから, 方程式は 3x-2|=412-3x=4から 2-3x=±4 としてもよいが、 |= {_^ |A|= -A (A≧0 のとき) (A < 0 のとき) であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち | 内の式 =0の値である。 (1)x2≧0x20, すなわち, x≧2とx<2の場合に分ける。 (2) 2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1 2 であるから,x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 (1)[1] 章 19 2 x 場合の分かれ目 41次不等式 解答 すなわち よって ゆえに 3x2=±4 答 すなわち 3x2=4 または 3x2=-4 |-4|=|A|を利用 のとき, 方程式は x-2=3x これを解いて x=-1 x=-1 は x2を満たさ ない。 よって (3)|x-2|<3から x=2, -2 の係数を正の数に [2] x<2のとき, 方程式は -(x-2)=3x 1 3 -3<x-2<3 (3),(4)x2=Xと おくと解きやすくな これを解いて x= 2 x= は x<2を満たす。 2 重要! 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないかを 必ずチェックすること (解答の の部分)。 1 各辺に2を加えて -1<x<5 |X|<3から [1], [2] から, 求める解は x= (4)|x-2|>3から x-2<-3, 3<x-2 -3<X<3 したがって x<-1, 5<x |X|>3から 最後に解をまとめておく。 -2x+3=x X<-3, 3<X これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 - をつけてをはず す。 x-1≧0, x-2 < 0 x=1は1≦x<2を満たす。 (x-1)+(x-2)=x <x-1>0, x-2≧0 2 (2)[1] x<1のとき,方程式は (x-1)(x-2)=xx-1<0,x-2<0→ すなわち 絶対値を数直線上の距離ととらえる |b-alは,数直線上の2点A(a),B(b)間の距離を表しているから, x-2は数直線」 座標が2である点と点P(x) の距離ととらえることができる。 よって、(3),(4)の不等 満たすxの値の範囲は、下の図のように表すことができる。 |x-21=3 x-21>3 \x-21=3 [3] 2≦xのとき, 方程式は 2x-3=x すなわち これを解いて x=3 以上から、 求める解は y=x-21のグラスと方程式 x=3は2≦xを満たす。 x=1, 3 最後に解をまとめておく。

未解決 回答数: 1
数学 高校生

(1)の問題で、なぜ2p,2p-1 となるのかがわかりませんでした。解き方を、理由含めて教えてもらえると嬉しいです。

例題 58 (2) 12299500 Gas ピタゴラス数の証明 ★★★☆ (1) αを自然数とするとき, αを4で割ったときの余りは0か1であるこ とを示せ (2)1,m,nを自然数とする。 +mmならば,L,mのうち少なくと も1つは2の倍数であることを証明せよ。 結論 向 RoAction 余りに関する証明は、余りによる分類 (剰余類)を利用せよ 例題56 (2)条件の言い換え (ア)だけが2の倍数 1(d) 問題編 5 46 ☆☆☆☆ 47 ★☆☆☆ 次の (1) (2) 次①② 思考プロセス 「結論」 Actiser P ( だけが2の倍数 (ウ), ともに2の倍数 3つの場合があり《Goit 証明しにくい Action» 「少なくとも~」の証明は,背理法を利用せよ 解 (1) 自然数αは2で割った余りに着目すると, 2p 2p-1 56 (自然)のいずれかで表すことができる。 (ア) α = 2p のとき a2= (2D)2=4p2 は自然数であるから, は整数である。(1 よって, d' を4で割った余りは0である。 4で割ったときの余りで 分類してもよいが, 2で 割ったときの余りで場合 分けして考えても うま 4でくることができ る。 (イ)a=2p-1 のとき a² = (2p-1)² = 4(p² − p) +1 は自然数であるから, は整数である。(= よって, d を4で割った余りは1である。 (ア)(イ)より, d を4で割ったときの余りは0か1である。 (2) l, mがともに2の倍数でないと仮定すると e) = M 48 ☆★☆☆ 49 ★★

未解決 回答数: 1
数学 高校生

(2)の数直線のとこで3a−2/4はなんで⚪︎なんですか⚫︎で表されるんじゃないんですか?

68 基本 例題 36 1次不等式の整数解 (1) (1)不等式 5x-7<2x+5を満たす自然数xの値をすべて求めよ。 3a-2 (2) 不等式 x <- 4 の範囲を求めよ。 000 を満たすxの最大の整数値が5であるとき、 定数αの値 指針 (1) まず, 不等式を解く。 その解の中から条件に適するもの (自然数) を選ぶ。 (2) 問題の条件を 数直線上で表すと、 右の図のようにな 基本34 基本 kk 5-x す整数 6 3a-2 x 指針 4 る。 のの 3a-2 4 を示す点の位置を考え、問題の条 件を満たす範囲を求める ▼自然数=正の整数 (1) 不等式から 3x<12 4は含まない 解答 したがって x<4 xは自然数であるから x=1,2,3 左 3a-2 (2)x< 4 を満たすxの最大の整数値が5であるから 1 2 3 4 * 解答 5 <- 3a-2 4 ≤6.. ...... (*) ara (st 4 3a-2=5のとき,不等 (0< 式は x<5 で,条件を満 3a-2 5- ・から 20<3a-2 4 たさない。J って、22 3a-2 4 よって a> ① =6のとき、不等 e>x 3 3a-2 8>* 式はx<6で,条件を満 ≦6から3a-2≦24 たす。 4 TO ① 26 よって as ② (S) 3 ① ② の共通範囲を求めて 22 51 3a-2 6 x 26 各辺に4を掛けて 20<3a-2≦24 各辺に2を加えて 22<3a≦26 22 26 各辺を3で割って <a≤ 3 3 注意 (*)は,次のようにして解いてもよい。 表す図 3 <a≤ 3 OSI ① わる。 検討 (22) >I 3 23 26 a

回答募集中 回答数: 0
1/1000