学年

教科

質問の種類

物理 高校生

モーメントのつりあいでTsin60×lsin60がだめな理由を教えて欲しいです

水平方 Tcos 45°Fcos 45°= 0 よって T=F 鉛直方向の力のつりあいより Tsin 45° + Fsin 45°-W = 0 T+F=√2w T=F=√2 sino T 45° G 0 A Tcos 45 B Fcoso 図 C W ① ②式より ・W 2 2 -x60=30√2 =42N2 [別解点Bのまわりの 力のモーメントのつりあいより Wx0.30-Tsin45" x 0.60-0 よってTw -W42N Rx-Tcos60°=0 Rx-1T=0 ここがポイント 96 . の向きを仮定し、水平 鉛直2方向のつりあいの式と力のモーメントのつりあいの式を立てる。 解答 抗力の向きを図のように仮定する。 C 水平方向の力のつりあいより10 30° ① MO 鉛直方向の力のつりあいより Ry+ Tsin 60°-W = 0 A Ry R Rx -Zsin 30° -Ry+ -T-W=0 T T'sin 60° 2 60° Ma の向きが正確に分から なくても、ある向きに仮定す ることにより解くことができ る。 その場合, Rx, Ryが負 の値であれば、仮定した向き と逆向きであると考えればよ い。 2 参考 抗力の大き と向き 京 点Aのまわりの力のモーメントのつりあ。 OS 12 30° -sin 60° B より Tcos 60° Ry [mm] m02.0 m08.0 W (080) OL T×lsin30° W x 12sin60°= 0 3 +--0 x/1/23 (x) 0 Rx (1) ③式より T=- √3 W mos.0 m01.0 (2)Tの値を①式に代入してR-12T=4W(右向き) Tの値を②式に代入して Ry=W- √3 = -W 上向き 2 R2=Rx²+R,2 = (4) + (12/0 4 w2 よってR=/12/2W Ry 1 (Stan0= Rx√3 ここがポイ 97 棒にはたらく から受ける垂直 m00 LO molよって0=30° (87) MO-08+0=3 ありをつるした糸の張力 W (おもりにはたらく重力は等し ける垂直抗力 NA と床から受ける摩擦であ あいの式を連立させて解く。

解決済み 回答数: 1
物理 高校生

オームの法則の導出のところで、最後にRを逆数で置かなきゃ成り立たないことは分かるのですが、どうして逆数としてRを置くのか教えて頂きたいです。

第4編 電気と磁気 抗に電流が流れていないときには電圧降 下はOVであり,抵抗の両端は等電位で ②電圧降下 抵抗 R[Ω] の導体に電流 I[A] が流れると, オームの法則により, 抵抗の両端の間で RI[V]だけ電位が下が る。これを電圧降下という(図42)。抵 voltage drop 電位 受けているとすると,この抵抗力と電場から受ける力のつりあいより 電圧 e V = kv 降下 (34) 低 RI[V] eV この式よりv= kl となるので,これを (33) 式に代入すると 抵抗 R [Ω] 位置 eV I = en X xS= kl e²nS V kl (35) 電流 [A] I=enus 休 と表される(図43)。 (33) 復習 問21 断面積 1.0×10 m² の導線に 1.7A の電 流が流れているとき, 自由電子の平均 移動速度v [m/s] を求めよ。 導線1.0m² 当たりの自由電子の数を 8.5×1028/m3, 電子の電気量を-1.6 × 10-19 C とする。 ② オームの法則の意味 図44のように, 長さ[m], 断面積 S[m²] の導体の両端 に電圧 V[V] を加えると, 導体内部に E = ¥ [V/m] の電場が生じる。導体中の 自由電子はこの電場から大きさe ¥ [N] の力を受けて、陽イオンと衝突しながら 進むが,自由電子全体を平均すると一定 の速さ [m/s]で進むようになる。 この とき,自由電子は陽イオンから速さ”に 比例した抵抗力ku [N] (k は比例定数) を 258 第4編 第2章 電流 自由電子全体を平均したもの 速さ 電場E= 陽イオン 静電気力 e 抵抗力 P222 陽イオン S〔m²] ある。 C オームの法則の意味 電子の運動と電流 断面積 S[m²]の導 体中を自由電子(電気量-e [C]) が移動す る速さを v[m/s], 単位体積当たりの自 由電子の数を n [1/m] とすると, 電流 の大きさI[A] は 図43 電子の運動と電流図の 断面 A を t[s] 間に通過する自由電 子は,断面Aの後方 長さ of [m] の円柱部分に存在していたと考え られる。 ●の円柱内の自由電子の 数は 何個分 体積 N=nx (ut XS)= nutS であり,合計の電気量の大きさは Q=exN=envtS である。 これと (31) 式 (p.256) より envtS t 図 42 電圧降下 これは,オームの法則を表している。 ここで kl R= (36) Op.257 オームの法則 e²nS V 1= (32) R 百由電子 とおくと I = が得られる。 V 断面積 S R vt D抵抗率 k ロー ①抵抗率 (36) 式において, e²n をp とおくと,抵抗R [Ω] は次のよう 10 に表すことができる。 映像 Link Web サイト 抵抗率 R=p (37) 抵抗 2R S 長さ2倍にすると R[Ω] 抵抗 (resistance) [m] 抵抗率 I=- t = envS 15 〔m〕 抵抗の長さ (length) S〔m²] 抵抗の断面積 抵抗 R S 断面積2倍にすると -1〔m〕 V[V] 図44 オームの法則の意味 比例定数は,注目する物質の材 質や温度によって決まる。これを抵 2S- 抗率(または電気抵抗率, 比抵抗) といい, resistivity 単位はオームメートル(記号 Ω·m) で ある。 抵抗 1/2 ①図 45 長さ 断面積の異なる抵抗 問22 断面積が2.0×10-7m² 抵抗率が1.1×10Ω・mのニクロム線を用いて, 1.0Ω の抵抗をつくりたい。 ニクロム線の長さを何mにすればよいか。 [Link 259 復習

解決済み 回答数: 1
物理 高校生

問8の解き方を教えてください🙇‍♀️

t₂-t₁ At 式 (3) において, を限りなくちに近づ けたとき, その平均の速度を、時刻にお [m] 傾きは AB 間の平均の 速度を表す ける瞬間の速度, または単に速度という。 I2 B 12.0 instantaneous velocity velocity 図1のグラフは. この自動車の位置xと 経過時間 t との関係を表す。 ちを限りなく 4 に近づけたとき, 直線AB の傾きは,点 接 8.8 4x 傾きは点に おける瞬間の 速度を表す Aにおける接線の傾きに等しくなる(探究 1 Op.18). (要 x-tグラフと速度 X 4.0 かなめ 直線AB の傾き・・・ 時刻からの間 の平均の速度を表す。 0 3.0 5.0 [s] 時間! 点Aにおける接線の傾き・・・ 時刻に おける瞬間の速度を表す。 図10 xtグラフと速度 けると,A,Bを通る直線は, Aにおける接線になる。 を限りなくに近づ 問8 図1のx-tグラフにおいて, 時刻 3.0秒から 5.0 秒の間の平均の速度と, 時刻 3.0 秒におけ ある瞬間の速度は, それぞれ何m/s か。 TRY グラフを読み取ろう [m〕 図は、3つの物体A,B,Cの運動のようすを表すx-tグラフであ る。 次のア~ウにあてはまるのはどの物体か。 理由とともにそれぞ B ア: 一定の速さで運動 イ:だんだん速くなる運動 [[s] ウ: だんだん遅くなる運動 第1節 物体の運動 17

解決済み 回答数: 1
1/4