学年

教科

質問の種類

物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0
物理 高校生

(3)のニが分かりません。 普通に1×Qじゃだめなんでしょうか?

166 2021年度 物理 次の文章を読み, ほ 答欄にマークせよ。 い 立命館大学部個別 (理系) イ に適切な数値を解答欄に記入せよ。 また, には指定された選択肢からもっとも適切なものを一つ選び、解 図1のように xyz軸を取り, 一辺の長さがLの正方形で厚さが無視できる導体板 A,B をそれぞれx = 0,x=d (ただしd>0)の位置に固定した。 導体板Aは 接地されており, 導体板Bには電気量Q(ただし Q > 0) の電荷が与えられてい る。また、以下の〔1〕〔2〕〔3〕 において、導体板や誘電体の中心は常にx軸 上にあり, 正方形の各辺はy軸、z軸と平行であるとする。 真空の誘電率をe とし, Lはdよりも十分大きいものとする。 ろ 〔1〕 図1において, 座標 (d-r,r, 0) に点P, 座標 (d,r,0)に点Rを 取る(図2)。ただし,0<r<d0<r</1/2であるとする。点Pでの電場 の向きは であり,大きさは である。 このとき, 導体板B の 電位を Vo とすると, Vo = は であり, 導体板 A,Bの間に蓄えられる静 電エネルギーを U とすると, U = に である。 また, 外力を加えて電気 量 g の点電荷を図2の原点Oから点R まで線分OR上をゆっくりと動かすと き, 外力がする仕事は ほ に等しい。ただし, |q| はQに比べ十分小さい とする。 〔2〕 図1において, さらに導体板 A,Bと同じ形状, 大きさを持ち,接地された 3 導体板Cをx=no dの位置に固定した (図3)。 十分な時間が経過した後,導 2 体板 B の電位は ×V となる。 また, 導体板 A,Bの間に蓄えられる 静電エネルギーは ×U となり,導体板 B, Cの間に蓄えられる静電 ×U となる。 エネルギーは 〔3〕 図1において、 今度は一様な比誘電率3を持ち, 断面が一辺の長さLの正 d 方形で厚さの誘電体 (絶縁体)で導体板 A を完全に覆った (図4)。 誘電体 では、誘電分極によってその表面に電荷(分極電荷)が現れ、誘電体内部の電 場を弱めるはたらきをする。 比誘電率を考慮すると,図4の「表面D」に現 れる分極電荷の電気量は = ×Qとなることがわかる。 また, 十分な時

未解決 回答数: 1
物理 高校生

黄色のマーカー引いてる所がわかりません。 (1)のy成分はなぜ−g cosθになるのでしょうか。 なぜ−がつくのかがわかりません。

口 発展例題5 斜面への斜方投射 [物理 図のように,傾斜角 0の斜面上の点Oから, 斜面と垂直な 向きに小球を初速v で投げ出したところ, 小球は斜面上の 点Pに落下した。 重力加速度の大きさをgとして,次の各問 答え 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 ■解説 (1) 斜面に平行な方向 にx軸、垂直な方向に y軸をとる (図)。 重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 O (1) 小球を投げ出してから, 斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 y -gcosoi 2 gsin g P x 成分 : gsin0 y成分: -gcose 方向の運動に着目する。 小球が斜面から最も はなれるとき, y方向の速度成分vy が 0 となる。 求める時間を とすると, 「vy=v-gcoset] の式から, 0=v-gcose・t t₁ = Vo gcoso (2) Pはy=0 の点であり, 落下するまでの時間 をもとして, 「y=vot-- - 1/27g cost ・f2」の式から, 0=vol2-1212gcos0.12 0=1₂(vo-cost-t₂) t> 0 から, t₂ = 200 gcoso 発展問題 48,52 Vo O x 方向の運動に着目すると, x=-12gsinet か ら, OP間の距離xは, x= =1/29s gsino.t=1212gsine. 2v" tan0 gcoso P 200 gcoso Point 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y=0 から方向 の最高点に達するまでの時間と, 最高点から再 びy=0 に達するまでの時間は等しく, t=2t, としてを求めることもできる。

解決済み 回答数: 1
物理 高校生

(5)解説で「⑤式において、θ=135°にもかかわらずΔλ≒0となるのは〜」とあるのですが、なんでΔλが0に近づくとX線強度が跳ね上がるのですか? (出典:難問題の系統とその解き方)

(i) 電圧 くなり ・飛び のよう たの) 傾きこん Wo h ら, 例題 コンプトン効果 電子の質量をm, プランク定数をん, 光速をcとして、以下の設問 に答えよ。なお, (1), (2) 以外は解法も簡潔に記すこと。 [A] 1923年, コンプトンは波長入のX線を金属薄膜に照射し、散乱さ れたX線の強度の角度分布を測定した。その結果の一部を模式的 に示したのが図1であり,X線が散乱されてもとの波長より長く なっている成分のあることが観測されている。 コンプトンはこの現象を,X線を粒子と考え、この粒子すなわ 光子と静止している電子との衝突と考えて解明した。 図1(a) X線強度 (X線の散乱角80°) 入 X線波長 図 1 (b) X線強度 (X線の散乱角0=135°) M 入。 入 X線波長 図2 入射光子 (19) O- 散乱光子 (1) O 反跳電子 (0) (1) 光子のエネルギーEと運動量P を,h, c, およびX線の波長入のう ち必要なものを用いて, それぞれ表せ。 (1-cos 0) を導け。 ただし、 (2) 散乱前後の光子の波長をそれぞれ入, 入] とし, 反跳電子の速さをか とし,入射方向に対するそれぞれの散乱角を,図2のように0.④と する。このとき,入射方向とそれに垂直な方向の運動量保存則を それぞれ記し,さらに、エネルギー保存則を記せ。 h (3) 41 (=A₁-A)=- 4 « 1 として、 do mc 近似を用いること。 (4) 反跳電子の運動エネルギーの最大値T maxをm,hcおよびふを用 いて表せ。 (50=135°の図1(b) では, 波長入。 付近にもピークが見られる。波長の ピークが光子と金属中の電子との散乱によるのなら、山のピーク は光子と何との散乱と考えられるか。 理由も述べよ。 [B] 一方、電子の波動性については, 1924年ド・ブロイが予想し, 1927年デヴィッスンとジャーマーが検証した。 彼らは格子間隔dの 2-1 原子の構造 263

解決済み 回答数: 1
1/5