学年

教科

質問の種類

物理 高校生

黄色マーカーのところなんで-gなのですか?

x 解説動画 発展問題 48, 52 発展例題5 斜面への斜方投射 物理 Vo 図のように、傾斜角 0 の斜面上の点0 から, 斜面と垂直な 向きに小球を初速 で投げ出したところ, 小球は斜面上の 点Pに落下した。重力加速度の大きさをg として,次の各問 答え 0 OP (1) 小球を投げ出してから、斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 思考 44.2 球 達した た。 こ 小球日 t=0, とし 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 1 0=vot₂-9 coso.tz² (1) (2) (4) 0=t Vo 解説 200 (1) 斜面に平行な方向 にx軸, 垂直な方向に y軸をとる(図)。重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 20から, t2= gcoso gsino 45. -gcose, g ら, OP間の距離 xは, P x= x方向の運動に着目すると, x= -gsinO・2 か -129sin0-13-12 gsing-(20)* げ gcoso x成分: gsin y 成分:-gcosd 方向の運動に着目する。 小球が斜面から最も はなれるとき,方向の速度成分 vy が 0 となる。 求める時間をとすると, vy=vo-gcoso・t の式から, Point 2vtan0 gcose m ( 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y=0から方向 の最高点に達するまでの時間と,最高点から再 びy=0に達するまでの時間は等しく, (D) 4 0=vo-gcoso・t t₁ = Vo gcoso (2) Py=0の点であり, 落下するまでの時間 t2=2tとしてtを求めることもできる。 を友として,「y=vot-1/12gcost・12」の式から、 発展問題 [知識] A 43. 投げ上げと自由落下 図のように,高さ19.6mのビルの 屋上から 小球Aを真上に速さ14.7m/s で投げ上げた。 小球 Aは,投げ上げた地点を通過して地面に達した。 重力加速度の 大きさを 9.8m/s2 として, 次の各問に答えよ。 14.7m/s A B (1) 小球Aが地面に達するのは,投げ上げてから何s後か。 19.6m

解決済み 回答数: 1
物理 高校生

(3)のニが分かりません。 普通に1×Qじゃだめなんでしょうか?

166 2021年度 物理 次の文章を読み, ほ 答欄にマークせよ。 い 立命館大学部個別 (理系) イ に適切な数値を解答欄に記入せよ。 また, には指定された選択肢からもっとも適切なものを一つ選び、解 図1のように xyz軸を取り, 一辺の長さがLの正方形で厚さが無視できる導体板 A,B をそれぞれx = 0,x=d (ただしd>0)の位置に固定した。 導体板Aは 接地されており, 導体板Bには電気量Q(ただし Q > 0) の電荷が与えられてい る。また、以下の〔1〕〔2〕〔3〕 において、導体板や誘電体の中心は常にx軸 上にあり, 正方形の各辺はy軸、z軸と平行であるとする。 真空の誘電率をe とし, Lはdよりも十分大きいものとする。 ろ 〔1〕 図1において, 座標 (d-r,r, 0) に点P, 座標 (d,r,0)に点Rを 取る(図2)。ただし,0<r<d0<r</1/2であるとする。点Pでの電場 の向きは であり,大きさは である。 このとき, 導体板B の 電位を Vo とすると, Vo = は であり, 導体板 A,Bの間に蓄えられる静 電エネルギーを U とすると, U = に である。 また, 外力を加えて電気 量 g の点電荷を図2の原点Oから点R まで線分OR上をゆっくりと動かすと き, 外力がする仕事は ほ に等しい。ただし, |q| はQに比べ十分小さい とする。 〔2〕 図1において, さらに導体板 A,Bと同じ形状, 大きさを持ち,接地された 3 導体板Cをx=no dの位置に固定した (図3)。 十分な時間が経過した後,導 2 体板 B の電位は ×V となる。 また, 導体板 A,Bの間に蓄えられる 静電エネルギーは ×U となり,導体板 B, Cの間に蓄えられる静電 ×U となる。 エネルギーは 〔3〕 図1において、 今度は一様な比誘電率3を持ち, 断面が一辺の長さLの正 d 方形で厚さの誘電体 (絶縁体)で導体板 A を完全に覆った (図4)。 誘電体 では、誘電分極によってその表面に電荷(分極電荷)が現れ、誘電体内部の電 場を弱めるはたらきをする。 比誘電率を考慮すると,図4の「表面D」に現 れる分極電荷の電気量は = ×Qとなることがわかる。 また, 十分な時

未解決 回答数: 1
物理 高校生

東工大物理の過去問で質問です 電磁気の問題(d)ですが、加える外力が−になる理由を知りたいです

44 平行板コンデンサーにおける振動 面積Sの同じ形状を持つ導体極板AとBが間隔dで向かい合わせに配置された平 行板コンデンサーを, 真空中に置く。 このコンデンサーの極板間に、導体極板と同じ 形状を持つ面積Sの金属板Pを, 極板Aから距離を隔てて極板に対して平行に置 く。 真空の誘電率をE0として以下の問に答えよ。 ただし, 極板端面および金属板端 面における電場の乱れはなく, 電気力線は極板間に限られるものとする。 導線, 極板, 金属板の抵抗,重力は無視する。 また金属板の厚さも無視する。 A [A] 図1のように,極板AとBは, スイッチ SW を介して接続され,極板Aは接 地されている。 L x d 1 コンデンサー 317 P SW (2012年度 第2問) B 図 1 (a) スイッチ SW が開いている時, 極板A, B間の電気容量を求めよ。 團 (b) スイッチ SW を閉じた後, 金属板Pを電気量Qの正電荷で帯電させる。 こ の電荷によって極板AとBに誘導される電気量を,それぞれ求めよ。 (c) 問(b)において, コンデンサーに蓄えられている静電エネルギーを求めよ。 團 (d) 問 (b)の状態から, 金属板Pを電気量Qの正電荷で帯電させたまま, 金属板 の位置をxからx+4xまで微小変位させる。 この変位による, コンデンサー に蓄えられている静電エネルギーの変化量を求めよ。 ただし, x, d に比べて |4x|は十分小さく. (△x) は無視できるものとする。 微小変位によりエネルギ ーが変化するということは, 金属板Pは力を受 ることを意味する。 微小 変位の間は金属板Pにはたらく力の大きさは一定であるとみなして, この力を 求めよ。ただし、極板AからBに向かう向きを力の正の向きとする。

回答募集中 回答数: 0
1/15