学年

教科

質問の種類

物理 高校生

Ⅱの(4)をsin cos関数を使って解いたのですが答えが合いませんでした。どこが間違っているのかと正しい解法を教えて頂きたいです。お手数お掛けしますが宜しくお願い致します。

1/25 4/29 pooooooo 33 単振動 ばね定数のばねを鉛直に立て,上端に質量 M の板を取り付け、静止させる。そして,質量mの 小球をこの板の上方んの高さから静かに落下させ る。 重力加速度をg とする。 I. 物体が板と弾性衝突をする場合について (1) 衝突により小球がはね上がるためには,m とMの間にどのような関係が必要か。 33 単振動 99 mmmmm M (2) 衝突後,板ははじめの位置より最大どれだけ下がるか。衝突は 1度だけとする。 II. 小球が粘土のようなもので,衝突後, 板と一体となって運動する 場合について, (3)衝突の際,失われる力学的エネルギーはどれだけか。 (4) 板ははじめの位置より最大どれだけ下がるか。 (東工大) Level (1) (2),(3)★ (4) ★★ Point & Hint TS (1) (3) とくに断りがなければ, 衝突は瞬間的なものと考える。 その場合、重力の 力積は無視でき, 衝突の直前, 直後に対して運動量保存則を用いてよい。 弾性衝 突では全運動エネルギーが保存されるが, 反発係数 (はね返り係数) e=1 として 扱ったほうが計算しやすい。 (2), (4) ばね振り子のエネルギー保存則には,次の2通りの方法がある。 A: 1/12mu2+1/21kx2=定 (xは振動中心からの距離) 単振動の位置エネルギー B: 1/12mo+mgh+1/21kx定(xは自然長からの距離) 弾性エネルギー 12/23kx2 のもつ意味の違いと、xの測り方の違いを押さえておくこと。多くの場 合, A方式の方が計算しやすいが,(4)では注意が必要。

回答募集中 回答数: 0
物理 高校生

問5の問題がわかりません。 解説のマーカーで線を引いた部分について、なぜ、1/4Tとなったのですか?

体1. 方向 問4 積 12 ③ Point 運動量の変化と力積の関係 物体の運動量の変化は、 積と等しい。 mv2mvy=FAt その間に物体が受けたか m質量 : 変化前の速度, V2 変化後の速度 Fat: 受けた力積 Point! 衝突での作用・反作用の法則 作用・反作用の法則より直線上の小球入 の衝突で小球 A. Bが及ぼし合う力は大きさが等 しく向きが逆である。 そのため, 衝突で小球が小 球Bから受けた力積をIとすると, 小球Bが小球A から受けた力積はと表される。 小球Aと小球Bが衝突したとき, 小球Bが小球 から受けた力積は, 運動量の変化と力積の関係から、 4mv-04mo (右向きに大きさ4mv) である。 作用・ 反作用の法則より 小球 A が小球Bから受けた力 は、4m (左向きに大きさ4mv)である。 問5 単振動の振幅,周期 13 8 Point! 単振動の振幅 小球Bの振動の中心はばねが自然の長さのときの 小球Bの位置(力のつり合いの位置, 小球 A と衝突 した位置)で,単振動の一方の端は小球Bが最もばね を押し縮めた (壁面に最も近づいた)ときの位置であ る。 そして、振動の中心から端までの距離が振幅で ある。 求める距離は,力学的エネルギー保存の法則を用 いると求めることができる。 1/2 =1/2x2 法則を用いると, 1.4mv²= よって, X=20√ 第3問 A 問1 動の周期をT とすると, T=2 衝突直後から小球Bは単振動を始める。この単振 二つの のスリッ 明暗の縞 4m m =4π k 問2 千 小球Bはばねが自然の長さ (振動の中心) の位置か ら単振動を始める。 単振動を始めてからはじめて小球 かばねを最も押し縮めたときまでの時間は 1/17 表されるので, 求める時間は, 1/27=1/2x47 m m =π √ k +α! 単振動の周期 小球Bの単振動の周期を導いてみよう。 ばねが自 然の長さからxだけ縮んでいるとき,水平右向きを 正とすると、小球Bにはたらく力はxと表され る。この力は復元力であり、小球Bの加速度をαと すると、運動方程式は4ma=kxとなるので. a=-- k x と表される。 4m また、単振動の角振動数を とすると a=-x と表されるので、上式と比較して k 小球Bの単振動の周期をTとすると 4m √ k 222 = 4π T= @ +α! 単振動の振幅 m k 単振動の角振動数を とすると, 小球Bが振動の 中心を通過するときの速さと振幅の関係は. k Point 経経反合 ※反 レー S1, S スリ リッ リッ この 光 Point! ばねによる単振動の周期 ばねにつながれた物体の単振動の周期は T=2π m √ k T: 周期, m: 質量 k : ばね定数 衝突直後から小球Bがはじめて壁面に最も近づい たときまでに移動した距離は,小球Bがばねを最も 押し縮めたときのばねの自然の長さからの縮みと考え ればよい。その距離をXとして、衝突直後に小球B が水平右向きに速さ”で動き始めたときとばねを も押し縮めたときについて力学的エネルギー保存の v = Aw= A√ Am (上の+α!のの式を代入) m よって, A=20 √ k (第二

回答募集中 回答数: 0
物理 高校生

物理基礎の力のつり合いの問題です。基本例題8で、ボールに働く力についてで、いくつか質問があります。 ①Fはバネを右に引いた力と同じですか? ②ボールを右に引く力が働いたら、その反作用でボールが左にバネを引く力がないのはなぜですか? 作用反作用がいつ働くのかがいまいちわかって... 続きを読む

例題 解説動画 基本例題8 力のつりあい 基本問題 58,596465666768 軽い糸の一端を天井につけ、 他端に重さ 2.0Nの小球 をつなぐ。この小球に, ばね定数10N/m の軽いばねの 一端を取りつけ,他端を水平方向に静かに引いた。 糸が 鉛直方向と60°の角をなして小球が静止しているとき 力の ばねの自然の長さからの伸びは何mか。 C 2.0N 10N/m 60° 00000 指針 小球は、重力, ばねの弾性力, 糸の 張力を受けて静止しており,それらはつりあって いる。 ばねの弾性力をF[N], 糸の張力をT〔N〕 と すると, 小球が受ける力は図のように示される。 力を水平方向と鉛直方向に分解し, 各方向におけ る力のつりあいの式を立てる。 これからFを求め, フックの法則を利用してばねの伸びを求める。 水平方向:F- T=0 2 鉛直方向: T 2 --2.0=0…② | 解説 水平方向, 鉛直方向のそれぞれの力 のつりあいから, √3 T[N] √ T(N) 30° 720 [N] 式 ②から,T= 4.0Nとなり,これを式①に代入し てFを求めると, F=2.0√3N ばねの伸びを x[m] とすると, フックの法則 「F=kx」 から, F 2.0√3 x= 2.0×1.73 10 10 -=0.346m 0.5m Point F〔N〕 小球にはたらく3つの力がつりあって いるとき,水平方向と鉛直方向のそれぞれの成 分もつりあっている。 V2.0N 基本例題 9 ばねと作用・反作用 同じばね定数の2つの軽いばね A, B を用意する。 ばね Aの一端を壁に取りつけ, 他端におもりをつるして静止さ せる。一方, ばねBは,その両端にそ して静止 基本問題 71, 72,73 LA 0000000000 [知識] 57. 重さと質量 基本 地球上の重力加速度の大き 大きさを地球上の1であるとして、次の各 (1)地球上での重さが294Nの物体の質量に (1)の物体が月面上にあるとき,その質 (3)(1)の物体が月面上にあるとき,その重 [知識 58. 糸の張力 図のように, 質量 1.0kg のお て静止させた。 このとき, おもりが受ける ただし, 重力加速度の大きさを9.8m/s2 と [知識 59. ばねの弾性力 自然の長さ 0.200mの軽 さが 0.240mになった。 重力加速度の大きさ (1) ばねのばね定数を求めよ。 (2) ばねに質量 5.0kgの物体をつるすと, ヒント ばねの弾性力の大きさは, ばねの伸びに上 思考 60. ばねのつりあい 表は,軽いばねにさ おもりをつるし、ばねの自然の長さからの ものである。重力加速度の大きさを9.8m/s 各問に答えよ。 (1)自然の長さからのばねの伸びx[m]を 弾性力 F〔N〕を縦軸にとったグラフを描い (2)

回答募集中 回答数: 0
1/11