学年

教科

質問の種類

物理 高校生

(3)の三枚目の写真のR’-Rの式がよく分かりません

At t であ 物理 問題Ⅱ 図1のような長さL. 断面積 S, 抵抗値Rの抵抗体 X を考える。この抵抗体Xの左 右の端に大きさVの電圧をかけたとき、抵抗体Xの内部には一様な電場(電界) が生じ るものとする。 自由電子は電場から力を受けて一定の加速度で運動し、抵抗体X内の イオンなどと衝突し、 いったん静止する。 この衝突が一定の時間間隔で繰り返し起こ ると仮定すると、 自由電子の速さは時刻に対して図2のように変化する。 自由電子1個 の質量を電気量e (e>0) 抵抗体Xの単位体積に含まれる自由電子の個数を とする。 S 抵抗体 X 図 1 L 設問(1) 以下の文章が正しい記述になるように, (あ~か)に入る適切な数式をL.S.V. em,n, Tのうち必要なものを用いて表せ。 ( 抵抗体 Xの内部に生じる電場の強さは の大きさは (あ) なので,自由電子の加速度 であり自由電子の平均の速さは (う) 一方、この抵抗体Xの断面を時間の間に通過する自由電子の数は xv4t なので、この抵抗体 X を流れる電流の大きさは したがって, 抵抗体 X の抵抗率は (カ) となる。 である。 (え) (お) xvとなる。 この抵抗体 X に力を加えると,長さはL+4L (4L>0) になり, 断面積はS-AS (4S>0) になった。 この変形において、抵抗体 X の抵抗率は変化しないものとする。 ただし, LAL, S4Sとし, 1>|x|のとき (1+x)=1+pxの近似式を用い,また,微 小量どうしの積を無視するものとする。 設問(2) 抵抗体 X の長さがL+4L, 断面積がS-4Sのときの抵抗値R' を R, L, 4L, S, 4S を用いて表せ。 設問(3) 力が加わり変形しても抵抗体 X の体積が変化しないものとして, R'-R を R, L, 4L を用いて表せ。 速さ ・時刻 T 2T 3T 図2

解決済み 回答数: 2
物理 高校生

物理のエッセンス熱の問8について、mNaが1モルの分子の質量になるのがなぜなのか分かりません。単位的にもそうなるとは思えなかったのですが、分かった方は教えて下さると有難いですm(_ _)m

かはないはず) ひx2 = by²2=022 よって 72=30x2 ③,④より F=- Nmv² 3L よって P-E-Nmv²_Nmv² 3L3 P= L2 3 V この結果を状態方程式 PV = nRT= -RT と比べてみれば (PV=) Nmv²_N_RT =hty mv²-3. R.T A NA 2 NA 3 定数は平均に関係しないから、 ギーの平均値を表していることになる。 F N NA 気体の内部エネルギー 1/2mv1.2mに等しく,分子の運動エネル M ③ 分子の平均運動エネルギー 1/2mv=12/2 NT=12/2kT 3 R -mv². NA ちょっと一言 この式は重要。 温度は化学では熱い冷たいの目安に過ぎなかった のが、分子の運動エネルギーで決まっていることがこうして分かった んだ。また,分子が運動をやめる T = 0 が最も低い温度となることも 示唆されている。定数R/NA はんと書いてボルツマン定数とよんでい る。 2乗平均速度√vは分子の平均の速さにほとんど等しい。27℃の酸素の √v^² を求めよ。酸素の分子量を 32,気体定数を8J/mol・K とする。 RO-31XY NAJS WEDR 内部エネルギーU とは分子の運動エネルギーの総和をいう。 そこで単原子分子からなる気体(以下,単原子気体とよぶ) では 3 RT=3 NRT="nRT 気体とよぶ)では U=Nx/1/2mv=N×012 NA 2 29 何原子分子であれ気体の内部エネルギーは絶対温度 Tに比例すること わかっている。 内部エネルギーは温度で決まる小

解決済み 回答数: 1
物理 高校生

!!!至急お願いします!!! (2)の解説をお願いします🙏

基本例題56 電場の合成 xy平面内で, A(-4.0m, 0),B(4.0m, 0) の2点に, それぞれ +5.0×10-C, -5.0×10-°Cの点電荷が固定 されている。 次の各問に答えよ。 ただし, クーロンの法 則の比例定数を 9.0×10°N・m²/C2 とする。<p (1) Aの電荷がP(0, 3.0m) の点につくる電場の強さ と向きを求めよ。 (2) A,B の電荷がPにつくる合成電場の強さと向きを求めよ。 正電荷は電荷から遠ざかる向き,負 指針 電荷は電荷に近づく向きの電場をつくる。 (2) は, A,Bの電荷が単独でPにつくる電場をそれ ぞれ求め,平行四辺形の法則を用いて合成する。 解説 (1) Aの電荷がPにつくる電場を EAとする。 EAの向きは, Aの電荷が正なので, APの向きとなる。 AP間の距離は √ 3.02+4.0² = 5.0m なので, 電場の強さE は, Ek から re Ex = 9.0×10°× 5.0×10-6 5.02 =1.8×10³ N/C y[m〕↑ 50000 (-4.0, 0) 基本問題 438, 442 f (2) B の電荷がPに つくる電をと すると, A,Bの各 電荷がつくる電場は, 図のように示される。 A,Bの電荷の大 40 P(0.3.0) TIED = 2.88×10°N/C A [50] (4.0, 0) 15.0 1441 A 4.07 B) x[m] P E 13.0 0 EB x B Ex きさは等しく, APBP から, EA=EBである。 合成電場はx軸の正の向きとなる。 電場の 強さEは, UE=EAcos0x2= (1.8×10³) x 4.0 X- 5.0 2.9×103N/C ×2 第V章 S 電気 9

解決済み 回答数: 1
1/5