学年

教科

質問の種類

物理 高校生

カッコ2って鉛直方向の初速度が同じでも小球bがp点に届かなかったらダメなんじゃないですか?それを考えてない理由を教えて欲しいです🙇

する 際 EEE-1-2 =1-13-1 力学的エネルギーは運動エネルギーと位置エネルギーの和をさすが, 位置エネル ギーは衝突の前後で変わっていないので,運動エネルギーの減少を調べればよい。 27 (1) Aを原点として鉛直上向きにy軸をとる。 落下するのは y = 0 のとき だから, 求める時間をとして公式 2 を用いると 0 = vt₁+(-g) t₁² 20 ... = g (2) 鉛直方向の初速度を同じにする必要がある(するとAとBはいつも同じ高 sin α = さにいる)。 そこで Vsin a = v (3) 最高点に達するまでの時間を とすると,公式より 0=v+(-g)t t2= t として 3 求めると早い この間にBは右への距離を動けばよいので l= (Vcosα)t2= Vv g cos α = g Vu √1-sin² a Vv 2 = 1 √√√√² - v² g 動量保存則より (4) 求める水平成分を vx とする。 水平方向での運 MV cos α = (M+m) vx 衝突直前 Mo m Ux= MV M+m M Vcosa 止 2 cos α = M+m Vx 直後 M+m 鉛直成分は A, B 共に衝突前が0なので 0 水平方向は外力がないので運動量保存は厳密に成りたつ。 一方、 鉛直方向は重力が かかっているが, 瞬間的な衝突では(重力の力積が無視できるため) 近似的に適用し てよい。 問題文にとくに断りがなければ, 瞬間衝突と思ってよい。 (5) 初速 ux での水平投射に入る。 落下時間はt なので 鉛直方向に上がる時間 V²-12 と下りる時間は等しい) x=vt= Mo

未解決 回答数: 1
物理 高校生

物理の運動法での問題です。(6)の問題で赤で囲った部分がどういう変形をして出てきたのか分からないので教えて欲しいです。

運動方程式と束縛条件 次の文中の空間(1)~(6)にあてはまる式を記せ。 なめらかな水平面上に、8の角をなす。なめらかな斜面をもつ図のような台 (質量M)があ り、その斜面上に小物体(質量m)がのっている。 はじめ,台と小物体は滑りださないように 支えられている。また、図のように水平面上に工軸。 水平面上の固定点から鉛直方向に必 をとり、重力加速度の大きさを」とする。 支えを静かに離すと, 小物体と台はともに動きはじめる。 台の加速度の成分をA, 小物 体の加速度の成分をα, y 成分をb, 小物体が斜面から受ける垂直抗力の大きさをNとす ると, 台の方向の運動方程式は MA= (1) 小物体の運動方程式は ① ma- (2) mb= (3) ③ となる。 また、小物体が台の斜面に沿って滑り下りることを考慮すると, A, a, b, 8の間に、 (4) ....... ④ の関係が成りたつことがわかる。 ①〜④により,小物体が受ける垂直抗力の大きさはM, m, 0, g を用いて, N = __(5) と求められる。 また、はじめの小物体の高さ (水平面からの高さ)をんとすると, 小物体が動き始めてから 水平面に達するまでの時間tは,m, M, g, 6, h を用いて, t = (6) と求められる。 (同志社 25-

解決済み 回答数: 1
物理 高校生

色塗ってるとこの式変形分からないので教えてください!お願いします

こると A cosx と 点dでは CA の媒質の 2πA T -=2U 振動から遅 yは、時刻における原 点での変位に等しい。 ゆえに y=Asin- sin 27 (t-x) ひ ) 波が原点から固定端を経て位置xに伝わるのにかかる時間は,原点から L+(L-x)=2L-xだけ移動しているので、 (3) 2L-x V であるA また,固定端反射では波の位相がずれることから, 時刻における位置x での反射波の変位 y2 は, 時刻t-2-xにおける原点の変位の位相を けずらしたものになる。 2π T Asin (27 (1-21-x)+x|--Asin 2 (1-21-x)on ※B 2L よって y=Asin (4) (2) (3)の合成波の変位をyとすると 277 y=+32=Asin (-)+(-Asin 2(-2-x) T 2π =2Asin T 2L-x V 2 COS 2L- 2π V T 2 <<-A 0 =2Asin となる。 この式において 2Asin T L. cos cos 27 (t-L) 2 (1-x)は振動の位置 x での振幅を表 =(-1)x Asin(ユ ◆ B (2)の結果を直接用いる形の解 法は、彼が原点からx=L で反射して位置まで進む距 離は (2L-x) 固定端にお ける反射で位相がずれるの で、変位は (−1)倍される (位 相が反転する)。 以上より ( のxを (2L-x) にかえて. 変位ys を (-1)倍したもの が yとなる。 t- は時刻に依存した振動を表すので, 波形の進行しない L sin 2x (L-x) cos 2-(1-1) 定在波とわかる。 (5)定在波が最大振幅になるのは COS 2 (t-1)=±1 のときだから y=±2Asin T 2x (L-x) 5 <-%C 固定端は定在波の節節 y= ±2A sin 2x(x) (1)の結果,入=vT と L=2』 を用いると 54 L=±2.Asin2 )= ±2A sin 2x() の最大振幅は2Aである 記の定在波の特徴を用い 図することもできる)。 2A- = 士24sin (12/26) 5 5x 2L 5π =2A cos -x 2L 0 1 5 よって、波形は図a の実線または破線のようになるC -2A セント 75 〈円形波の反射〉 (1) 「反射の際、波の振幅および位相は変わらない反射波は器壁に対して点①と対称な点を波源とする波と同 (2) 反射の際に位相が変わらないので、「2つの波が弱めあう条件』(経路差)=(半波長)×奇数 (3)波源から遠くなると2つの波の経路差は小さくなる。(5)(L上の節の数)=(Oと壁の間にある節の数) (10) ドップラー効果は波源と観測者を結ぶ方向の速度成分によって起こる。 物理重要問題集

未解決 回答数: 1
1/62