学年

教科

質問の種類

物理 高校生

【5】(3)2.4×10^-5 J 【6】(3)Q²/2ε0S N になる理由を教えていただきたいです🙇🏻‍♀️

第4編 電気と磁気 20 電気容量がそれぞれ9.0μF, 1.5μF, 3.0μFの 5 コンデンサー回路 (p.246~248,250~251) コンデンサー C1, C2, C3, および 6.0V の直流 電源Eを,図のように接続した。 各コンデンサー 5 は、電源Eを接続する前は電気量を蓄えてい ないものとする。 apf C₁ HH (1)接続した3個のコンデンサーの合成容量 C〔μF] を求めよ。 11C/15 μF E (2) 各コンデンサーに蓄えられる電気量 Q1 Q2, Q3 [μC] を求めよ。 コンデンサー C3 に蓄えられる静電エネルギー U[J] を求めよ。 6 コンデンサーの極板が及ぼしあう引力 (Op.250~251) 極板面積 S[m²], 極板間隔d [m] 極板間が真空のコ ンデンサーにQ[C] の電荷を与える。 真空の誘電率を co〔F/m] とする。 (1) コンデンサーが蓄えている静電エネルギーU [J] 15 を求めよ。 6v 3MF Ad d (2) 極板上の電荷が逃げないようにして, 極板間隔を4d[m]だけゆっくりと広げ るとき,静電エネルギーの増加量を求めよ。 2枚の極板は正負に帯電しているので、引力を及ぼしあっている。この引力に 逆らって極板を引き離すために,外から加えた力のした仕事が (2)の静電エネ ルギーの増加になったと考えられる。外力の大きさがこの引力の大きさに等し いとして,この引力の大きさ F[N] を求めよ。

回答募集中 回答数: 0
物理 高校生

この問題のイはなぜ⊿yに1/2がついているのですか?等加速度運動の式だとついていないのが正解のように思えます

次の文章を読んで, れの解答欄に記入せよ。 なお, に適した式を問1、問2では,指示に従って解答を で与えられたものと同じ式を表す。た はすでに だし,以下では,弦が受ける重力は無視できるものとする。 必要であれば、以下の関係式を使 ってもよい。 01 のとき sin0≒0≒ tan 0 7 x 関数y=sin(ax+b) の傾きは xの関数 y=cos (ax+b) の傾きは =-asin(ax+b)(a,b: 定数) Ay Ax sin(a+β)+sin(a-β)=2sinacos β, sin (a+β)-sin(α-β)=2cos a sin β T (1) 図1のように,一定の大きさTの力で水平に張られた線密度(単位長さ当たりの質量)p の十分に長い弦を伝わる横波について考える。 図2のように, 微小時間 At の間に,波が 水平方向に微小な長さ x だけ進むとき, 弦を伝わる波の速さvv=ア と表される。 この間に、波の右端付近では, 長さ x の部分(以下ではこの部分をXとする) が波の進行 とともにわずかに持ち上げられる (変位する)。 微小時間 At の間, X は張力のみを受けて, 運動するとみなせる。 X の鉛直方向の運動を初速度 0, 加速度の大きさαの等加速度運動と 近似すると,Xの重心の変位の大きさ 1/24y , Ata のみを用いて, 1/1/24y=イ]と 表される。さらに, 長さ x の部分 X が受ける力の鉛直成分は,張力 T の鉛直成分 Tyの みであるから,運動方程式より,aは,p, Ax および T, を用いてa=ウと表される。 加えて,弦が水平となす角度が十分小さいとき, Ty=x Ayr と書くことができるので,”は To のみを使ってv= エ と表すことができる。 of T Ay Ax V Ty =acos(ax+b)(a,b: 定数) 図1 4x 4y T T

回答募集中 回答数: 0
1/6