学年

教科

質問の種類

物理 高校生

物理の電磁気、交流回路についての質問です。 (4)、(6)についてです。 僕は(2)で求めた電流についてのtの関数を積分してQ=CVに代入、同じく微分してV=L*(di/dt)に代入してそれぞれコンデンサーとコイルにかかる電圧をtの関数で表してからその関数の最大値を√2で割... 続きを読む

100 /10 10 7 100 (センター試験) 130 図1のように,抵抗値 R の抵抗,電気容量 C のコンデンサーおよ び自己インダクタンスLのコイルを直列に接続し, 交流電源につない だ回路がある。 オシロスコープで抵抗の両端の電圧を観測したところ, 図2のような周期T, 最大値 V の正弦曲線であった。 オシロ 電圧 スコープ Vo--- T m 2 T 抵抗 コイル 0 コンデンサー f t 時刻 - Vol 図2 図 1 (1) 交流の角周波数を求めよ。 以下, (5) 以外はTの代わりに を用いて答えよ。 (2) (3) この直列回路での消費電力 (平均電力) を求めよ。 また実効値を求めよ。 抵抗に流れる電流を時刻tの関数として表せ。 (4) コンデンサーにかかる電圧の実効値を求めよ。 また, 電圧 vc を時 刻tの関数として表せ。 (5)図2で,コンデンサーにかかる電圧が0になる時刻を Ost ST の範囲で求めよ。 (6)コイルにかかる電圧の実効値を求めよ。 また,電圧 v を時刻tの 関数として表せ。 \(7) 電源電圧の最大値 V, を求めよ。 また, ab間の電圧の最大値を 求めよ。 + (富山大 上智大 )

未解決 回答数: 1
物理 高校生

カッコ2って鉛直方向の初速度が同じでも小球bがp点に届かなかったらダメなんじゃないですか?それを考えてない理由を教えて欲しいです🙇

する 際 EEE-1-2 =1-13-1 力学的エネルギーは運動エネルギーと位置エネルギーの和をさすが, 位置エネル ギーは衝突の前後で変わっていないので,運動エネルギーの減少を調べればよい。 27 (1) Aを原点として鉛直上向きにy軸をとる。 落下するのは y = 0 のとき だから, 求める時間をとして公式 2 を用いると 0 = vt₁+(-g) t₁² 20 ... = g (2) 鉛直方向の初速度を同じにする必要がある(するとAとBはいつも同じ高 sin α = さにいる)。 そこで Vsin a = v (3) 最高点に達するまでの時間を とすると,公式より 0=v+(-g)t t2= t として 3 求めると早い この間にBは右への距離を動けばよいので l= (Vcosα)t2= Vv g cos α = g Vu √1-sin² a Vv 2 = 1 √√√√² - v² g 動量保存則より (4) 求める水平成分を vx とする。 水平方向での運 MV cos α = (M+m) vx 衝突直前 Mo m Ux= MV M+m M Vcosa 止 2 cos α = M+m Vx 直後 M+m 鉛直成分は A, B 共に衝突前が0なので 0 水平方向は外力がないので運動量保存は厳密に成りたつ。 一方、 鉛直方向は重力が かかっているが, 瞬間的な衝突では(重力の力積が無視できるため) 近似的に適用し てよい。 問題文にとくに断りがなければ, 瞬間衝突と思ってよい。 (5) 初速 ux での水平投射に入る。 落下時間はt なので 鉛直方向に上がる時間 V²-12 と下りる時間は等しい) x=vt= Mo

未解決 回答数: 1
物理 高校生

このページの全問の解説が欲しいです🙏

<大問3> x軸上を等加速度運動する物体について考える。 速度, 加速度の向きはx軸の正の向きを 正の向きとして、以下の間に答えよ。 (E) この物体が時刻t=0 に x=0を速度 4 [m/s] で通過し, 3 [s] 後に速度が 10 [m/s] になっ た場合。 (1) 物体の加速度を求めよ。 B (2) t=3 [s] での位置を求めよ。 (3)この物体がx=12 [m] を通過するときの速度を求めよ。 次に,この物体が t=0にx=0を速度4 [m/s] で通過し、4[s] 後に速度が-12 [m/s] に なった場合。 (1) [er] (4) 物体の加速度を求めよ。 (5)この物体の速度が,正から負に変わる時刻を求めよ。 (6)この物体が再び原点を通過する時刻を求めよ。 (a\m] <大問4> [e\m] 図1のように,x軸上を 運動する物体があり、時刻で の速度vが図2で表される。 時刻 t =0での物体の位置を原 点 x=0 とする。 v[m/s] 0 x(m) 図1 v[m/s] (1) 時刻t=2sにおける物体の 加速度αは (ア) m/s" であ り 時刻 t = 6sでの加速度 α は (イ) [m/s' であり、 時刻 16 図2 8 0 7 15 t(s) t=11sでの加速度αは (ウ) m/s である。 (2) 時刻 t = 6s における物体の位置 x は (エ) mである。 (3) 物体が原点x=0から右に最も離れる時刻は (オ)であり、 そ の位置 x は (カ) である。 (4) 時刻 t = 15s以後も,そのまま運動を続けた場合, 物体が再び原点 に戻ってくる時刻は (キ) sであり、そのときの速度vは(ク) m/sである。 3 8 (5)

回答募集中 回答数: 0
1/64