学年

教科

質問の種類

物理 高校生

94の解説の線が引いてあるところは公式だから cosだというのはわかるのですが 95の線が引いてあるところは 引き上げるからsinなのか公式だからsinなのかどちらですか?

第5章■ 仕事と力学的エネルギー 45 第5章 仕事と力学的エネルギー ここがポイント 94 力の向きと物体の動く向きが異なる場合の仕事を求めるには, 「W=Fxcos!」 を用いる。 解答 加えた力,重力, 垂直抗力(大きさ)の した仕事をそれぞれ W1, W2, W3 [J] と すると, W=Fxcose」 より (1) W=4.0×2.0× cos30° 4.0 N N 30° 4.0 cos 30° N 0-8- ②2 √3 =4.0×2.0× 2 10 N 4.0 130°0 =4.0×2.0× 1.73 2 -=6.92 から求 れる。 v3 6.9J 95 0905cos 90°-0 (2)W2=10×2.0×cos 90°=0J (3)W=N×2.0×cos90°=0J 1 ここがポイント L'Orxa L'OIXQ.= =(0,-) 力と移動方向が垂直な場合, 仕事は0である。 解答 (1) 物体を引き上げる力は重力の斜面にそっ た成分とつりあっている(図a)。 よっ て 斜面を使うと物体を引き上げる力は小さくなるが, 引き上げる距離が長くなる。 そのため, 同じ高さ まで鉛直上方に引き上げる場合と、仕事は等しくなる。=20×2=0x8.06 AL F〔N〕 ② 40 130° F=20×9.8×sin 30°=98N ③ 1 「ゆっくり」 引き上げる とは、力のつりあいを保ちな がら引き上げることである。 (2) 斜面にそって引く力は 98N なので, 仕事 の式 「W=Fx」 より 図a W=98×10=9.8×102J (3) 斜面にそって10m 引き上げたときの高 20×9.8N となる。 「 W=Fx」 より 3 W'=(20×9.8)×5.0=9.8×10²J さん [m] は,図bより 10m、 2 th=10×sin30°=5.0m 30° としてもよい。 物体を鉛直上向きに引き上げるために必 18.e 117 30° 要な力は重力とつりあっているので 図 b 3 斜面を用いると, 引く力 を小さくすることはできるが, 仕事を減らすことはできない (仕事の原理)。 手30°20×9.8 N 2 直角三角形の辺の長さ の比よりん:10=1:2 h=10×12=5.0m さ

解決済み 回答数: 1
物理 高校生

(2)の後半の「遠心力が重力より勝っていればたるまない」から、(遠心力)≧mgという式だと考えたのですが、解答では(張力)≧0となっていてそれが何故か分かりません。θ=180°において張力がある場合下向きに力が働くと思い、だとするとたるんでしまうと考えています。解説お願いします!

チェック問題 2 振り子の円運動 糸の長さ おもりの質量mの振り 子がある。 おもりに最下点で初速度 v を与えた。 標準 6分 (1) 振れの角が0のときの糸の張力T を求めよ。 (2) 糸がたるまずに1周するには vo はいくら以上必要か。 解説 (1) 《円運動の解法》 (p.191) で解く。 STEP 1 中心は点O 2 半径1, 3速さ” M m 45 は未知。 さぁ、どうやって求める? 速さときたらエネルギー。 いまは, 摩擦熱は出てな いから《力学的エネルギー 保存則》 (p.162) ですよ。 ☐ キミの言うとおりだ。 式を立てると, Vo mg 2 = mvo -m² + mg/l(1-cos 0 ) 遠心力 図 a よって、v=√vo2-2gl(1-cose) STEP 「回る人」から見て,遠心力 m を作図 STEP 3 重力を半径, 接線方向に分解しよう。 ここで糸は伸び縮みしない ね。このことから,半径方向には確実に力のつり合いが成り立つので, v² T T = mg cos0 + v² ② mT ②に①を代入すると, Vo 2 - T=m + g(3 cosa - 2)} ...... CS CamScanner でスキャン 第15章円運動 | 193

解決済み 回答数: 2
物理 高校生

(1)力学的エネルギー保存則を使って答えは解いていて、 運動エネルギーの変化=全ての力がした仕事 を使って解いてみたのですが、答えが会いません、 なぜダメなのか分からないので教えて欲しいです

基本例題 25 保存力以外の力の仕事 点Aを境に左側がなめらかで右側があらい水平面がある。 点Aよ り左側のなめらかな水平面上で, ばね定数 100N/m のばねの一端を 固定し、他端に質量 1.0kgの物体を置く。 ばねを0.70mだけ縮めて て手をはなすと、物体はばねが自然の長さになった位置でばねから 離れた。重力加速度の大きさを9.8m/s²とする。 ①日まだ離れてい (1) 物体がばねから離れるときの速さは何m/sか。 物体はばねから離れた後右に進み, 点Aを通過したのち点Bで停止した。 の選 (2) 物体とあらい面との間の動摩擦係数が0.50 のとき, AB間の距離は何mか。 指針 (1) 弾性力 (保存力) による運動では力学的エネルギーは保存される。 (2) 力学的エネルギーの変化=動摩擦力がした仕事 (W=-Fx) (1) 力学的エネルギー保存則より 0+1/12 ×100×0.70²=1/1/2×1.0×v²+0 ゆえにv=√100×0.702= 7.0m/s (2) 動摩擦力が物体にした仕事は W=-0.50×1.0×9.8xl = -4.91〔J〕 mmmmm 第5章 仕事と力学的エネルギー 53 070m 手を離前の 22 (1) it 01/ 2 ゆえに 1=- 自然の長さ 7.02 2×4.9 C 物体の力学的エネルギーの変化 = W より ×1.0×0°/12×1.0×7.0°= -4.9l -=5.0m ►►► 60,61 -1(m) A あらい水平面 最初に加経度を まれていた 運惑方程式も VEC

解決済み 回答数: 1
物理 高校生

高校生物理基礎の問題です 赤枠で囲った問題の解説にある 三つの 0 はそれぞれ何エネルギーが 0 であることを示しているのか教えてください。

第5章■仕事と力学的エネルギ リード] D 110 保存力以外の力の仕事 図のように床と斜面 がつながれている。 床のAB間はあらいが、他はなめら かである。 床の一部分にばね定数kのばねをつけ, 一端 に質量mの物体を押しあてて、 ばねを縮めた。 AB間 の物体と床との間の動摩擦係数をμ',距離をS, 重力加速度の大きさをgとする。 (1) ばねを解放したとき, 物体が点Aに達する直前の速さを求めよ。 Ammun B (2) 物体は点Bを通過後,斜面を上り, 最高点Cに達した。 Cの床からの高さんを求めよ。 もどってきた物体がばねを縮めた。ばねの最大の縮みxを求めよ。 →例題 24,113 応用問題 112 仕事と運動エネルギー■ 質量2.0kgの物体が, なめらかな水平面のx軸上の原点Oを速さ3.0m/sで通過 した瞬間から,速度の方向を含む鉛直面内で一定の角0だ け上向きに力F [N] を加えた。 力Fの大きさは移動ととも に右のグラフのように変化する。 また, cos0=0.80 とす る。 111 力学的エネルギーの保存 ばね定数k [N/m] の軽いつる 巻きばねの一端を固定し、他端に質量m[kg] のおもりをつるして, おもりを下から手で持った台で, ばねが自然の長さになるように支 える。 重力加速度の大きさをg[m/s'] とする。 (1) 台をゆっくりおろしていくとき, x [m] だけ下がった位置で台 がおもりを支える力の大きさ F [N] を求めよ。 (2) おもりが台から離れるときのばねの伸びx] [m] を求めよ。 つりあい (3) はじめの状態で台を急に取り去った場合, 最下点でのばねの伸びx2 [m] を求めよ。 (4) おもりの最下点について, x1 と x2 の差が生じた理由を述べよ。 ➡115 (1) 力Fが物体にした仕事Wは何Jか。 (2) 物体が x=10m の点を通過する瞬間の速さは何m/s か。 0 F[N] 8.0 2.0 0 mmmmmm 10m 自然の長さ CQ 10 lllllllllll h ■■ ■■ x (m) -102 ヒント 112 カFの分力 Fcose のみが仕事をする。 (F-x 図の面積) × cos0が,Fのした仕事となる。 てい mi と 放した の 化を Imgs 111 112 ここがポイント 軽いつる巻きばねなのでばね自身の重さは無視できる。 これはばねを縦につるしても、おもりを取 りつけなければばねは伸びないということである。 (1) おもりを支えながら台をおろしていく場合、 おもりは台が上向きに支える力によって仕事をされ、 力学的エネルギーは保存されない。 (1) 台をゆっくりおろしているので, おもりは等速運 動をしている。 よって, おもりにはたらく力はつ りあっている (おもりにはたらく力の合力は0であ る) から,上向きを正として, aより力のつり あいの式はkx+F-mg=0 ゆえに F=mg-kx [N] (2) 台がおもりを支える力が0になるとおもりは台か ら離れる。 (1) の結果において, x=xのとき F0 となるから (3) 台を急に取り去った場合、 おもりには保存力である重力とばねの弾性力のみがはたらくので、力学 的エネルギーは保存される。 0-mg-kx₁ よって mg - [m] (3) 自然の長さの位置を基準水平面とする(図5)。 はじ めの位置と最下点での力学的エネルギー保存則より 0+0+0=0-mgx2+ 100 0=-—-kx (x₂-2mg) 0皿 2mg k 0より [m] (4) 台をゆっくりおろしていく場合は、おもりを支え る力によって負の仕事をされ力学的エネルギーが 減少するが, 台を急に取り去った場合は力学的エ ネルギーが保存されるため。 -xcos 0 自然の 長さ 2.0 第5章■仕事と力学的エネルギー ばねの 0 はじめ 水平面 図b mg 解答 (1) 力Fが物体にした仕事を W [J] とす F(N) 4 ると, F-x 図の面積より 18.0 W= (2.0+8.0)×10 2 cos0=0.80 であるから W=40J 10 (2) x=10mでの物体の速さを [m/s] とすると, 物体の運動エネルギー の変化は、物体にされた仕事に等しいので「1/12m-1/2m -mv² =W₁ よ り 1/23×2.0 × -/1/3×2.0×3.0°=40 Cheeeeeeeeee よってv=7.0m/s 最下点 ここがポイント 力の大きさが変化するので 「W=Fxcose」 の式にFの値を代入することはできない。 力Fの分力 Fcos0 のみが仕事をするので, (F-x 図の面積) × cos0 が F のした仕事となる。 また、物体の運動エネルギーの変化 = 物体にされた仕事の関係が成りたつ。 51 「ゆっくり」 とは 「力のつ りあいを保ちながら」という ことである。 2 (2)の結果と比べると2 信伸びていることがわかる。 したがって, おもりはつりあ いの位置を中心に はじめの 位置を最上点, ばねの伸び の位置を最下点として振動す る。 @__mv²+W= 2mo (はじめ+仕事終わり) を用いてもよい。

解決済み 回答数: 1
1/4