学年

教科

質問の種類

物理 高校生

ダイオードと豆電球の問題なのですが、Ⅲで答えがそのようになる理由がわからないので説明して頂きたいです。よろしくお願い致します。

第2問 ダイオードは,順方向に電圧を加えると, 流れる電流が電圧とともに急激に増大する特性をもつ。電球は,電圧 の上昇とともに熱としてエネルギーが失われるために、電圧とともに電流の上昇が徐々にゆるやかになる。電流と 電圧の特性が図2-1の曲線で表されるダイオード1個 (D)と、電流と電圧の特性が図2-1の曲線bで表され る特性の等しい電球 2個 (L, Lg)を, 図2-2のように起電力 V で内部抵抗が無視できる直流電源と接続した。 直流電源の電極側の点Bは接地した。 以下で、ダイオード、電球の抵抗値とは,それらの両端の電圧を,それら に流れている電流で割ったものとして定義する. I 図2-1に示す特性のダイオードと電球について以下の問いに答えよ。 (1) ダイオードの両端の電圧が0.70Vのときのダイオードの抵抗値はいくらか、 図2-1のグラフから読み 取った値を使って有効数字2桁で求めよ. (2)電圧が上昇するにつれて,ダイオードの抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない (3)電球の両端の電圧が0.30Vのときの電球の抵抗値はいくらか。 図2-1のグラフから読み取った値を 使って有効数字2桁で求めよ. (4) 電圧が上昇するにつれて、 電球の抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない -4- 九州工改題) 電流 [A] 3.0 2.0 1.0 Dale A. 0 1.0 0 0.5 電圧[V] 図2-1 直流電源 V [V] B L1 L2 図 2-2 -5- b 1.5 2.0 A 09 1124 D 076

回答募集中 回答数: 0
物理 高校生

(2)について質問です 2枚目が解答なのですが、オレンジの線を引いてるところが分かりません。なぜmは同じになるといいきれるのですか??

(カ) 354 マイケルソン干渉計■ 図のように,光源 Sを出た波長の単色光が, Sから距離 Ls にある 半透鏡Hにより上方への反射光と右方への透過光の光源S 2つに分けられる。 反射光は,Hから距離 LAに固 定された鏡Aで反射して同じ経路をもどり,一部が Hを透過してHから距離 LD 離れた検出器Dに到達 する。 一方, Sを出てHを右方へ透過した光は, 鏡 D [兵庫県大 改] 347 鏡ATE LA 鏡 B 半透鏡H -LS- -LB- AL AL LD 検出器 D Bで反射して同じ経路をもどり、一部がHで反射してDに到達する。 これら2つの光が 干渉する。 初めのHからBまでの距離は LB (LB>LA) で, Bは左右に動かすことができ る。Hの厚さは無視でき, 鏡および半透鏡において光の位相は変わらないものとする。 X Bを少しずつHに近づけるとDで検出される光の強さは単調に増加し, ALだけ動い たとき,最大となった。 逆に, Bを少しずつHから遠ざけると光の強さは単調に減少 し,初めの位置から 4L だけ動いたとき最小となった。 波長をALで表せ。 Bを初めの位置にもどし, 波長を入から少しずつ大きくしていく。 Dで検出される 光の強さは単調に増加し,+4のとき最大となった。 LB-L』を入とで表せ。 次に,光の波長を入にもどし, Bを初めの位置から動かして, Hからの距離がL』 に 等しくなるまで少しずつ動かした。 この間のDで検出される光の強さを観測すると, 250 回最小値をとることがわかった。 このとき,(2)における入と 4入の比を求め よ。 入 [16 新潟大 改] ヒント 353(2)隣りあう2つのスリットを通る光の経路差= (回折後の経路差) (入射前の経路差) 354 (3)250 回目の最小値をとったときの,HとBの距離はLa+24Lであり,最小値は 44L ご とに現れる。

回答募集中 回答数: 0
物理 高校生

この問題の(3)がよく理解できません。詳しく解説して欲しいです。お願いしますm(_ _)m

0 の位置 の位置 x〔m〕 が経過 形 基本例題 32 定在波(定常波) 153,154 解説動画 x軸上を要素の等しい2つの正弦波 a, b が,互いに逆向きに進んで重 なりあい、定在波が生じている。 図には, 波 a, 波 b が単独で存在したときの,時刻 t=0s における波a (実線)と波b (破線) が示してある。波の速さは2.0cm/sである。 (1) 図の瞬間(t=0s) の合成波の波形をかけ。 (2) 定在波の腹の位置x を 0≦x≦4.0(cm) ↑y[cm] a の範囲ですべて求めよ。 0 12 13 4 x[cm] (3) t=0s の後,腹の位置の変位の大きさが 最大になる最初の時刻を求めよ。 -1 -2 指針 定在波では,まったく振動しない所(節)と大きく振動する所 (腹)が交互に並ぶ。 解答 波波bの波長 入=4.0cm 周期 T=_4.0 =2.0S V 2.0 (1) 波の重ねあわせによって 図1 Ay[cm] 2 1 0 a 合成波 4 |x〔cm〕 x〔m〕 波形を示す (2) 図1の合成波の波形で、変位の大きさが最大 となる位置が腹の位置。 -1 -2 図1(t=0) ↑y[cm] 合成波 6.0 t[s] 振動を示す x=1.5cm, 3.5cm 8 (3) t=0s (図1の状態)の後,波 a,波bが 1/3 ずつ進むと、図2のように, 山と山(谷と谷) が重なり,腹の位置での変位の大きさは最大 になる。 進む時間はTだから 1=1/21=20-1 -= 0.25s 8 2 11 O 13 4 x[cm] -1 -2 図2(t=1/27)

回答募集中 回答数: 0
1/28